Advertisement

Towards a Spatio-Temporal Information System for Moving Objects

  • Maribel Yasmina Santos
  • José Mendes
  • Adriano Moreira
  • Monica Wachowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6782)

Abstract

The analysis of movement in the geographic space requires the development of systems and data models supporting storage and querying functions useful for the analysis of how movement evolves and how it is constrained by events or obstacles that emerge in space. In the past, the design of information systems has been often based on application driven approaches and restricted to specific types of positioning technologies, leading to a proliferation of a wide range of data models, database models and functionalities. To overcome this proliferation, this paper proposes a spatio-temporal information system that is independent of the application domain and aiming to abstract the positioning technology used for gathering data. Here we describe the initial design of the basic infrastructure of such a system, integrating a data model and its fundamental functionalities for the collection, storage, retrieval and visualization of positioning data. The results achieved so far are promising to demonstrate how the system is able to store positioning data with different formats, and in applying its functionalities to the loaded data.

Keywords

moving objects spatial data spatio-temporal information system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelzaher, T.: Mobiscopes for Human Spaces. IEEE Computing – Mobile and Ubiquitous Systems 6(2), 20–29 (2007)Google Scholar
  2. 2.
    Li, B., Cai, G.: A General Object-Oriented Spatial Temporal Data Model. In: The Symposium on Geospatial Theory, Processing and Applications, Ottawa (2002)Google Scholar
  3. 3.
    Nóbrega, E., Rolim, J.T., Times, V.: Representing uncertainty, profile and movement history in mobile objects databases. In: GeoInfo 2004, Brazil (2004)Google Scholar
  4. 4.
    Güting, R., Almeida, V., Ansorge, D., Behr, T., Ding, Z., Hose, T., Hoffmann, F., Spiekermann, M., Telle, U.: Secondo: An extensible DBMS platform for research prototyping and teaching. In: Proceedings of the 21st International Conference on Data Engineering (ICDE 2005), pp. 1115–1116. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar
  5. 5.
    Wolfson, O.: Moving Objects Information Management: The Database Challenge. In: The 5th Int. Workshop on Next Generation Information Technologies and Systems (2002)Google Scholar
  6. 6.
    Wachowicz, M., Ligtenberg, A., Renso, C., Gürses, S.: Characterising the Next Generation of Mobile Applications Through a Privacy-Aware Geographic Knowledge Discovery Process. In: Giannotti, F., Pedreschi, D. (eds.) Mobility, Data Mining and Privacy, Springer-Verlag, Berlin, pp. 39–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Lee, E.J., Ryu, K.H.: Design of Vehicle Information Management System for Effective Retrieving of Vehicle Location. In: Int. Conf. on Computational Science and its Applications, Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Weng, J., Wang, W., Fan, K., Huang, J.: Design and Implementation of Spatial-temporal Data Model in Vehicle Monitor System. In: The 8th Int. Conf. on GeoComputation, University of Michigan (2005)Google Scholar
  9. 9.
    Wolfson, O., Sistla, P., Xu, B., Zhou, J., Chamberliam, S.: DOMINO: Databases for Moving Objects Tracking. In: SIGMOD 1999, Phildelphia PA (1999)Google Scholar
  10. 10.
    Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-Temporal Data Types: An Approach to Modeling and Querying Moving Objects in Databases. GeoInformatica 3(3), 269–296 (1999)CrossRefGoogle Scholar
  11. 11.
    Forlizzi, L., Güting, R.H., Nardelli, E., Schneider, M.: A Data Model and Data Structures for Moving Objects Databases. In: ACM SIGMOD 2000, Dallas, USA (2000)Google Scholar
  12. 12.
    Praing, R., Schneider, M.: A Universal Abstract Model for Future Movements of Movement Objects. In: Fabrikant, S.I., Wachowicz, M. (eds.) The European Information Society: Leading the way with geo-information, Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Moreira, A., Santos, M.Y., Wachowicz, M., Orellana, D.: The impact of data quality in the context of pedestrian movement analysis. In: Painho, M., Santos, M.Y., Pundt, H. (eds.) Geospatial Thinking, Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Transactions on Database Systems 25(1), 1–42 (2000)CrossRefGoogle Scholar
  15. 15.
    Pelekis, N., Frentzos, E., Giatrakos, N., Theodoridis, Y.: HERMES: aggregative LBS via a trajectory DB engine. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, pp. 1255–1258 (2008)Google Scholar
  16. 16.
    Worboys, M.F., Hearnshaw, H.M., Maguire, D.J.: Object-Oriented Modelling for Spatial Databases. Int. J. of Geographical Information Systems 4(4), 369–383 (1990)CrossRefGoogle Scholar
  17. 17.
    Dobing, B., Parsons, J.: How UML is used. Communications of the ACM 49, 109–113 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maribel Yasmina Santos
    • 1
  • José Mendes
    • 1
  • Adriano Moreira
    • 1
  • Monica Wachowicz
    • 2
  1. 1.Information Systems DepartmentUniversity of MinhoPortugal
  2. 2.Geodesy and Geomatics EngineeringUniversity of New BrunswickCanada

Personalised recommendations