Advertisement

Nonlinear Dynamics for Information Processing

  • Y. V. Andreyev
  • A. S. Dmitriev
  • A. N. MiliouEmail author
  • A. N. Anagnostopoulos
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

In this chapter we describe the technology of information processing in dynamical systems. A method for storing and processing information is proposed, in which digital information blocks are unambiguously related to dynamic attractors (periodic orbits and chaotic attractors) of nonlinear dynamical systems. Actually, a dynamical system is designed with prescribed dynamic attractors in its phase space. Dynamical systems with such cycles attain some interesting features regarding information processing, such as associative memory (retrieval of the whole stored image when a small part of it is given), search by content, novelty filter, etc. The designed dynamical systems can be used as memory cells for texts, pictures and other kinds of information. We give practical examples of using this approach to create information search engines, information archives with associative access to the stored data, and other data management solutions.

Keywords

Chaotic Attractor Associative Memory Phase Trajectory Information Region Stable Limit Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1].
    Afraimovich, V.S., Shilnikov, L.P.: On strange attractors and quasiattractors. In: Barenblatt, G.I. (ed.) Nonlinear Dynamics and Turbulence, pp. 1–34. Boston, London, Melburn, Pitmen (1983)Google Scholar
  2. [2].
    Afraimovich, V.S., Verichev, N.I., Rabinovich M.I.: Chaotic synchronization of oscillations in dissipative systems. Izv. VUZov. Radiofizika, 29, 1050 (1986)MathSciNetGoogle Scholar
  3. [3].
    Aihara, K.: Chaotic neural networks. In: Kawakami, H. (ed.) Bifurcation Phenomena in Nonlinear Systems and Theory of Dynamical Systems, pp. 143–161. World Scientific (1990)Google Scholar
  4. [4].
    Andreyev, Yu.V.: Attractors and bifurcation phenomena in 1-D dynamical systems with stored information. Izv. VUZov. Prikladnaya nelineinaya dinamika 3, 3–15 (in Russian) (1995)Google Scholar
  5. [5].
    Andreyev, Yu.V., Belsky, Yu.L., Dmitriev, A.S.: Information processing in nonlinear systems with dynamic chaos. Proceedings of International Seminar Nonlinear Circuits and Systems, Moscow, 1, 51–60 (1992)Google Scholar
  6. [6].
    Andreyev, Yu.V., Dmitriev, A.S., Chua, L.O., Wu C.W.: Associative and random access memory using one-dimensional maps. Int. J. Bifurc. Chaos, 2, 483–504 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7].
    Andreyev, Yu.V., Belsky, Yu.L., Dmitriev, A.S.: Storing and recognition of information using stable cycles of 2-D and multi-dimensional maps. Radiotekhnika i elektronika 39, 114–123 (in Russian) (1994)Google Scholar
  8. [8].
    Andreyev, Yu.V, Belsky, Yu.L., Dmitriev, A.S., Kuminov, D.A.: Information processing using dynamical chaos. IEEE Trans. Neural Networks 7, 290–291 (1996a)Google Scholar
  9. [9].
    Andreyev, Yu.V., Dmitriev, A.S., Kuminov, D.A., Chua, L.O., Wu, C.W.: 1-D maps, chaos and neural networks for information processing. Int. J. Bifurc. Chaos, 6, 627–646 (1996b)zbMATHCrossRefGoogle Scholar
  10. [10].
    Atmanspacher, H., Scheingraber, H., Voges, W.: Global scaling properties of the chaotic attractor reconstructed from experimental data. Phys. Rev. A 37, 1314–1322 (1988)CrossRefGoogle Scholar
  11. [11].
    Auerbach, D., Cvitanovic, P., Eckmann, J.-P.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 2387 (1987)MathSciNetCrossRefGoogle Scholar
  12. [12].
    Babloyantz, A.: Evidence of chaotic dynamics of brain activity during the sleep cycle. In: Mayer-Kress, G. (ed.) Dimension and Entropies in Chaotic Systems, pp. 252–259. Springer, Berlin (1986)Google Scholar
  13. [13].
    Babloyantz, A., Destexhe, A.: Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA, 83, 3513–3517 (1986)CrossRefGoogle Scholar
  14. [14].
    Baird, B., Eeckman, F.: A normal form projection algorithm for associative memory. In: Hassoun, M.H. (ed.) Associative Neural Memories: Theory and Implementation. Oxford University Press, New York (1992)Google Scholar
  15. [15].
    Barnsley, M.: Fractals Everywhere. Academic (1988)Google Scholar
  16. [16].
    Bowen, R.: Entropy for maps of the interval. Topology 16, 465–467 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17].
    Carpenter, G.A.: Neural network models for pattern recognition and associative memory. Neural Networks 2, 243 (1989)CrossRefGoogle Scholar
  18. [18].
    Cvitanovic, P.: Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 2729–2732 (1988)MathSciNetCrossRefGoogle Scholar
  19. [19].
    Destexhe, A., Sepulchre, J.A., Babloyantz, A.: A comparative study of the experimental quantification of deterministic chaos. Phys. Lett. A 132, 101–106 (1988)CrossRefGoogle Scholar
  20. [20].
    Dmitriev, A.S.: Storing and recognition information in one-dimensional dynamical systems. Radiotekhnika i Elektronika 36, 101–108 (in Russian) (1991)Google Scholar
  21. [21].
    Dmitriev, A.S.: Chaos and information processing in dynamical systems. Radiotekhnika i elektronika 38, 1–24 (in Russian) (1993)Google Scholar
  22. [22].
    Dmitriev, A.S., Panas, A.I., Starkov, S.O.: Storing and recognition information based on stable cycles of one-dimensional maps. Phys. Lett. A 155, 494–499 (1991)MathSciNetCrossRefGoogle Scholar
  23. [23].
    Dmitriev, A.S., Jdanova, L., Kuminov, A.: The simplest neural-like systems with chaos, in Proc. Int. Conf. Fluctuations and Noise, Kyoto, Japan (1991)Google Scholar
  24. [24].
    Dmitriev, A.S., Kuminov, D.A., Pavlov, V.V., Panas, A.I.: Storing and processing texts in 1-D dynamical systems. (585), Institute of Radioengineering and Electronics RAS, Moscow (in Russian) (1993)Google Scholar
  25. [25].
    Eisenberg, J., Freeman, W.J., Burke, B.: Hardware architecture of a neural network model simulating pattern recognition by the olfactory bulb. Neural Networks 2, 315–325 (1989)CrossRefGoogle Scholar
  26. [26].
    Farmer, J.D.: Information dimension and the probabilistic structure of chaos. Z. Naturforsch, 37A, 1304–1325 (1982)MathSciNetGoogle Scholar
  27. [27].
    Freeman, W.J.: Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybern. 56, 139–150 (1987)CrossRefGoogle Scholar
  28. [28].
    Freeman, W.J., Yao, Y., Burke, B.: Central pattern generating and recognizing in olfactory bulb. Neural Networks 1, 277–278 (1988)CrossRefGoogle Scholar
  29. [29].
    Hawkins, J., Blakeslee, S.: On intelligence. Times Books, New York (2004)Google Scholar
  30. [30].
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA. Apr. 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  31. [31].
    Grebogi, C., Ott, E., Yorke, J.A.: Critical exponent of chaotic transients in nonlinear dynamic systems. Phys. Rev. Lett. 57, 1284 (1986)MathSciNetCrossRefGoogle Scholar
  32. [32].
    Grebogi, C., Ott, E., Yorke, J.: Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation. Phys. Rev. Lett. 50, 935–938 (1983)MathSciNetCrossRefGoogle Scholar
  33. [33].
    Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks 1, 17–61 (1988)CrossRefGoogle Scholar
  34. [34].
    Gunaratne, G.N., Procaccia, I.: Organization of chaos. Phys. Rev. Lett. 59, 1377–1380 (1987)MathSciNetCrossRefGoogle Scholar
  35. [35].
    Kitchens, B.: Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Chains. Springer (1998)zbMATHCrossRefGoogle Scholar
  36. [36].
    Klatzky, R.J.: Human Memory. Structures and Processes. Freeman, San Francisco (1975)Google Scholar
  37. [37].
    Kohonen, T.: Content-addressable memories. Springer, Berlin (1980)zbMATHCrossRefGoogle Scholar
  38. [38].
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inform. Transm. 1, 1–7 (in Russian) (1965)Google Scholar
  39. [39].
    Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, New York (1997)zbMATHGoogle Scholar
  40. [40].
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  41. [41].
    Maistrenko, Yu.L., Maistrenko, V.L., Sushko, I.M.: Order for the appearance of attractors in piecewise linear systems. In: Chaos and Nonlinear Mechanics, Series B, 7, World Scientific (1994a)Google Scholar
  42. [42].
    Maistrenko, Yu.L., Maistrenko, V.L., Sushko, I.M.: Bifurcation phenomena in generators with delay lines. Radiotekhnika i elektronika, Moscow, 8-9, 1367–1380 (1994a)Google Scholar
  43. [43].
    Matsumoto, K., Tsuda, I.: Calculation of information flow rate from mutual information. J. Phys. A. Math. Gen. 21, 1405–1414 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44].
    Nicolis, J.S.: Should a reliable information processor be chaotic? Kybernets. 11, 269–274 (1982)MathSciNetCrossRefGoogle Scholar
  45. [45].
    Nicolis, J.S.: Dynamics of Hierarchical Systems: An Evolutionary Approach. Springer (1986)Google Scholar
  46. [46].
    Nicolis, J.S.: Chaos and Information Processing: A Heuristic Outline. World Scientific, (1991)Google Scholar
  47. [47].
    Nicolis, J.S., Tsuda, I.: Chaotic dynamics of information processing – the “magic number seven plus-minus two” revisited. Bull. Math. Biol. 47, 343–365 (1985)MathSciNetzbMATHGoogle Scholar
  48. [48].
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 57, 1196–1199 (1990)MathSciNetCrossRefGoogle Scholar
  49. [49].
    Pecora, L.M., Carrol, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  50. [50].
    Procaccia, I.: The organization of chaos by periodic orbits: Topological universality of complex systems. In: Jullien, R. (ed.) Universalities in Condensed Matter. Springer (1988)Google Scholar
  51. [51].
    Sharkovski, A.N.: Coexistence of cycles of a continuous map of the line into itself, Ukrain. Mat. Zh. 16, 61–71 (1964); English translation: Int. J. Bifur. Chaos Appl. Sci. Engrg. 5, 1263–1273 (1995)Google Scholar
  52. [52].
    Shilnikov, L.P.: A case of the existence of a denumerable set of periodic motions. Sov. Math. Dokl. 6, 163–166 (1965)Google Scholar
  53. [53].
    Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain. Sci. 10, 161–165 (1987)CrossRefGoogle Scholar
  54. [54].
    Shaw, R.: Strange attractors, chaotic behavior and information flow. Z. Naturfursch. 36a, 80–112 (1981)Google Scholar
  55. [55].
    Schuster, H.G.: Deterministic Chaos. An Introduction. Wiley, New York (2004)Google Scholar
  56. [56].
    Smale, S.: Differentiable dynamical systems, Bull. Amer. Soc. 73, 747–817 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57].
    Starkov, S.O, Andreyev, Yu.V., Dmitriev, A.S., Matveev, M.A., Shirokov, M.Ye.: Synchronization in the map with stored information. Proceedings of 4th Workshop NDES, Seville, Spain, pp. 299–303 (1996)Google Scholar
  58. [58].
    Tsuda, I.: A hermeneutic process of the brain. Progr. Theor. Phys., Supplement 79, 241–259 (1984)Google Scholar
  59. [59].
    Tsuda, I.: Dynamic link of memory – chaotic memory map in nonequilibrium neural net-works. Neural Networks 5, 313–326 (1992)MathSciNetCrossRefGoogle Scholar
  60. [60].
    Tsuda, I.: Can stochastic renewal of maps be a model for cerebral cortex? Physica D 75, 165–178 (1994)zbMATHCrossRefGoogle Scholar
  61. [61].
    Tsuda, I., Koerner, E., Shimizu H.: Memory dynamics in asynchronous neural networks. Progr. Theor. Phys. 78, 51–71 (1987)CrossRefGoogle Scholar
  62. [62].
    Voges, W., Atmanspacher, H., Scheingraber, H.: Deterministic chaos in accrecting systems: analysis of the x-ray variability of Hercules X. Astrophys. J. 320, 794–802 (1987)CrossRefGoogle Scholar
  63. [63].
    Wiegrinch, W., Tennekes, H.: On the information flow for one-dimensional maps. Phys. Lett. A 144, 145–152 (1990)MathSciNetCrossRefGoogle Scholar
  64. [64].
    Yao, Y., Freeman, W.J.: Model of biological pattern recognition with spatially chaotic dynamics. Neural Networks 3, 153–170 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Y. V. Andreyev
    • 1
  • A. S. Dmitriev
    • 1
  • A. N. Miliou
    • 2
    Email author
  • A. N. Anagnostopoulos
    • 3
  1. 1.Kotelnikov Institute of Radio Engineering and Electronics of RASMoscowRussia
  2. 2.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations