Modeling and Compensation of Flicker in Electrical Networks using Chaos Theory and SVC Systems

  • Mario Fabiano AlvesEmail author
  • Zelia Myriam Assis Peixoto
Part of the Understanding Complex Systems book series (UCS)


This chapter presents an integrated model for the simulation and compensation of the voltage flicker introduced to a power system due to an electric arc furnace. Chaos theory is used to model the chaotic nature of the arc voltage and a Static Var Compensator (SVC) is used for flicker compensation. It starts with a brief discussion on the impact of arc furnaces in power quality and the different approaches available for representation of the nonlinear and dynamic time-varying characteristic of the electric arc. The arc furnace voltage-current deterministic characteristic is introduced and its association with Chua’s circuit is, initially, investigated by simulations in the MatLab environment. Then, the fundamental aspects of the control strategy of a SVC are presented. From these, an explanation on the adjustment of the model to correctly simulate the furnace operation is shown. To validate the proposed system modelling and solutions, the chapter presents a case study on a 30 MVA arc furnace plant, obtained from an implementation in the Alternative Transients Program (ATP) environment. Finally, conclusions are presented.


Phase Lock Loop Voltage Fluctuation Negative Sequence Power Factor Correction Firing Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support by CEMIG – Energy Company of Minas Gerais – Brazil, through Research and Development Project 048.


  1. [1].
    Ozgun, O., Abur, A.: Flicker study using a novel arc furnace model. IEEE Trans. Power. Deliv. 17(4), 1158–1163 (2002)CrossRefGoogle Scholar
  2. [2].
    Acha, E., Semlyen, A., Rajakovié, N.: A harmonic domain computational package for nonlinear problems and its application to electric arcs. IEEE Trans. Power. Deliv. 5(3), 1390–1397 (1990)CrossRefGoogle Scholar
  3. [3].
    King, P.E., Ochs, T.L., Hartman, A.D.: Chaotic responses in electric arc furnaces. J. Appl. Phys. 76(4), 2059–2065 (1994)CrossRefGoogle Scholar
  4. [4].
    Chen, C.S., Chaung, H.J., Hsu, C.T., Tseng, S.M.: Stochastic voltage flicker analysis and its mitigation for steel industrial power systems. IEEE Porto Power Tech Conference 10th–13th. Porto, Portugal (2001)Google Scholar
  5. [5].
    Alves, M.F., Peixoto, Z.M.A., Garcia, C.P., Gomes, D.G.: An integrated model for study of flicker compensation in electrical networks. Elec. Power Syst. Res., vol. 80, no. 10, pp. 1299–1305. Elsevier (2010)Google Scholar
  6. [6].
    Montanari, G.C., Logginil, M., Cavallinil, A. et al.: Arc-furnace model for the study of flicker compensation in electrical networks. IEEE Trans. Power. Deliv. 9(4), 2026–2036 (1994)CrossRefGoogle Scholar
  7. [7].
    Varadan, S., Makram, E.B., Girgis, A.A.: A new time domain voltage sourge model for an arc furnace using EMTP. IEEE Trans. Power. Deliv. 11(3), 1685–1691 (1996)CrossRefGoogle Scholar
  8. [8].
    Kennedy, M.P.: Three steps to chaos – part I: evolution, fundamental theory and applications. IEEE Trans. Circ. Syst. 40(10), 640–656 (1993)zbMATHCrossRefGoogle Scholar
  9. [9].
    Kennedy, M.P.: Three steps to chaos – part II: a Chua’s circuit primer. IEEE Trans. Circ. Syst. 40(10), 657–674Google Scholar
  10. [10].
    O’Neill-Carrillo, E., Heydt, G.T., Kostelich, E.J.: Nonlinear deterministic modeling of highly varying loads. IEEE Trans. Power. Deliv. 14(2), 537–542 (1999)CrossRefGoogle Scholar
  11. [11].
    Carpinelli, G., Iacovone, F., Russo, A., Varilone, P.: Chaos-based modeling of DC arc furnaces for power quality issues. IEEE Trans. Power. Deliv. 19(4), 1869–1876 (2004)CrossRefGoogle Scholar
  12. [12].
    Grunbaum, R.: SVC light: a powerful means for dynamic voltage and power quality controle in industry and distribution. Power Electronics and Variable Speed Drives Conference Publication No. 475 0 IEE 2000 (2000)Google Scholar
  13. [13].
    Doleial, J., Castillo, A.G., Valouch, V.: Topologies and control of active filters for flicker compensation. ISIE’2000. Cholula, Puebla, Mexico (2000)Google Scholar
  14. [14].
    Samet, H., Parniani, M.: Predictive method for improving SVC speed in electric arc furnace sompensation. IEEE Trans. Power. Deliv. 22(1), 732–734 (2007)CrossRefGoogle Scholar
  15. [15].
    Samet, H., Golshan, M.E.H.: Employing stochastic models for prediction of arc furnace reactive power to improve compensator performance. IET Generation, Transmission and Distribution, 2(4), 1751–8687 (2008)CrossRefGoogle Scholar
  16. [16].
    Sharmeela, C., Uma, G., Mohan, M.R., Karthikeyan, K.: Voltage flicker analysis and mitigation – case study in AC electric arc furnace using PSCAD/EMTDC. International Conference on Power System Technology – POWERCON. Singapore (2004)Google Scholar
  17. [17].
    Poudel, S., Watson, N.R.: Assessment of light flicker mitigation using shunt compensators. International Conference on Power System Technology – POWERCON. Singapore (2004)Google Scholar
  18. [18].
    Machado Neto, J.P.: Aplicacao das Tecnicas de Identificacao de Sistemas Nao-Lineares a Modelagem de Fornos Eletricos a Arco. MSc Dissertation, Pontifical Catholic University of Minas Gerais Belo Horizonte Brazil (2005)Google Scholar
  19. [19].
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica, 16D, pp. 285–317, Amsterdam, North-Holland (1985)Google Scholar
  20. [20].
    Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall, New Jersey (1999)Google Scholar
  21. [21].
    Robert, A., Couvreur, M.: Recent experience of connection of big arc furnaces with reference to flicker level. CIGRE Paper 36–305 (1994)Google Scholar
  22. [22].
    Alves, M.F., Peixoto, Z.M.A., Garcia, C.P., Gomes, D.G., Machado Neto, J.P.: An electric arc furnace model for flicker estimation. WSEAS International Conferences on Power Engineering Systems – ICOPES’05. Rio de Janeiro, Brazil (2005)Google Scholar
  23. [23].
    IEC Flickermeter – Functional and Design Specifications. In: IEC 61000-4-15 International Standard, Electromagnetic Compatibility (EMC) 1st edn. Part 4: Testing and Measurement Techniques Section 15 (1997)Google Scholar
  24. [24].
    UIE Part 5 Flicker and Voltage Flutuation. Qualit de l’alimentation “Power Quality” Working Group WG 2. Prepared by de travail GT (1999)Google Scholar
  25. [25].
    Miller, T.J.E.: Reactive Power Control in Electric Systems. John Wiley, New York (1982)Google Scholar
  26. [26].
    Larsson, T.: Voltage Source Converters for Mitigation of Flicker Caused by Arc Furnaces. Ph.D. Thesis, Department of Electric Power Engineering Division of High Power Electronics, Royal Institute of Technology, Stockholm, Sweden (1998)Google Scholar
  27. [27].
    Le, T.N.: Kompensation schnell vernderlicher Blindstrme eines Drehstromverbrauchers. etzArchiv, Bd. 11, H.8, pp. 249–253 German (1989)Google Scholar
  28. [28].
    Gomes, D.G.: Estrategia de Controle Para Mitigacao de Cintilacao Luminosa Causada por Fornos Eletricos a Arco Utilizando Compensador Estatico de Reativos. MSc Dissertation, Pontifical Catholic University of Minas Gerais Belo Horizonte Brazil (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mario Fabiano Alves
    • 1
    Email author
  • Zelia Myriam Assis Peixoto
    • 1
  1. 1.Graduate Program in Electrical EngineeringPontifical Catholic University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations