Skip to main content

Modeling and Compensation of Flicker in Electrical Networks using Chaos Theory and SVC Systems

  • Chapter
  • First Online:
Applications of Chaos and Nonlinear Dynamics in Engineering - Vol. 1

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This chapter presents an integrated model for the simulation and compensation of the voltage flicker introduced to a power system due to an electric arc furnace. Chaos theory is used to model the chaotic nature of the arc voltage and a Static Var Compensator (SVC) is used for flicker compensation. It starts with a brief discussion on the impact of arc furnaces in power quality and the different approaches available for representation of the nonlinear and dynamic time-varying characteristic of the electric arc. The arc furnace voltage-current deterministic characteristic is introduced and its association with Chua’s circuit is, initially, investigated by simulations in the MatLab environment. Then, the fundamental aspects of the control strategy of a SVC are presented. From these, an explanation on the adjustment of the model to correctly simulate the furnace operation is shown. To validate the proposed system modelling and solutions, the chapter presents a case study on a 30 MVA arc furnace plant, obtained from an implementation in the Alternative Transients Program (ATP) environment. Finally, conclusions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ozgun, O., Abur, A.: Flicker study using a novel arc furnace model. IEEE Trans. Power. Deliv. 17(4), 1158–1163 (2002)

    Article  Google Scholar 

  2. Acha, E., Semlyen, A., Rajakovié, N.: A harmonic domain computational package for nonlinear problems and its application to electric arcs. IEEE Trans. Power. Deliv. 5(3), 1390–1397 (1990)

    Article  Google Scholar 

  3. King, P.E., Ochs, T.L., Hartman, A.D.: Chaotic responses in electric arc furnaces. J. Appl. Phys. 76(4), 2059–2065 (1994)

    Article  Google Scholar 

  4. Chen, C.S., Chaung, H.J., Hsu, C.T., Tseng, S.M.: Stochastic voltage flicker analysis and its mitigation for steel industrial power systems. IEEE Porto Power Tech Conference 10th–13th. Porto, Portugal (2001)

    Google Scholar 

  5. Alves, M.F., Peixoto, Z.M.A., Garcia, C.P., Gomes, D.G.: An integrated model for study of flicker compensation in electrical networks. Elec. Power Syst. Res., vol. 80, no. 10, pp. 1299–1305. Elsevier (2010)

    Google Scholar 

  6. Montanari, G.C., Logginil, M., Cavallinil, A. et al.: Arc-furnace model for the study of flicker compensation in electrical networks. IEEE Trans. Power. Deliv. 9(4), 2026–2036 (1994)

    Article  Google Scholar 

  7. Varadan, S., Makram, E.B., Girgis, A.A.: A new time domain voltage sourge model for an arc furnace using EMTP. IEEE Trans. Power. Deliv. 11(3), 1685–1691 (1996)

    Article  Google Scholar 

  8. Kennedy, M.P.: Three steps to chaos – part I: evolution, fundamental theory and applications. IEEE Trans. Circ. Syst. 40(10), 640–656 (1993)

    Article  MATH  Google Scholar 

  9. Kennedy, M.P.: Three steps to chaos – part II: a Chua’s circuit primer. IEEE Trans. Circ. Syst. 40(10), 657–674

    Google Scholar 

  10. O’Neill-Carrillo, E., Heydt, G.T., Kostelich, E.J.: Nonlinear deterministic modeling of highly varying loads. IEEE Trans. Power. Deliv. 14(2), 537–542 (1999)

    Article  Google Scholar 

  11. Carpinelli, G., Iacovone, F., Russo, A., Varilone, P.: Chaos-based modeling of DC arc furnaces for power quality issues. IEEE Trans. Power. Deliv. 19(4), 1869–1876 (2004)

    Article  Google Scholar 

  12. Grunbaum, R.: SVC light: a powerful means for dynamic voltage and power quality controle in industry and distribution. Power Electronics and Variable Speed Drives Conference Publication No. 475 0 IEE 2000 (2000)

    Google Scholar 

  13. Doleial, J., Castillo, A.G., Valouch, V.: Topologies and control of active filters for flicker compensation. ISIE’2000. Cholula, Puebla, Mexico (2000)

    Google Scholar 

  14. Samet, H., Parniani, M.: Predictive method for improving SVC speed in electric arc furnace sompensation. IEEE Trans. Power. Deliv. 22(1), 732–734 (2007)

    Article  Google Scholar 

  15. Samet, H., Golshan, M.E.H.: Employing stochastic models for prediction of arc furnace reactive power to improve compensator performance. IET Generation, Transmission and Distribution, 2(4), 1751–8687 (2008)

    Article  Google Scholar 

  16. Sharmeela, C., Uma, G., Mohan, M.R., Karthikeyan, K.: Voltage flicker analysis and mitigation – case study in AC electric arc furnace using PSCAD/EMTDC. International Conference on Power System Technology – POWERCON. Singapore (2004)

    Google Scholar 

  17. Poudel, S., Watson, N.R.: Assessment of light flicker mitigation using shunt compensators. International Conference on Power System Technology – POWERCON. Singapore (2004)

    Google Scholar 

  18. Machado Neto, J.P.: Aplicacao das Tecnicas de Identificacao de Sistemas Nao-Lineares a Modelagem de Fornos Eletricos a Arco. MSc Dissertation, Pontifical Catholic University of Minas Gerais Belo Horizonte Brazil (2005)

    Google Scholar 

  19. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica, 16D, pp. 285–317, Amsterdam, North-Holland (1985)

    Google Scholar 

  20. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall, New Jersey (1999)

    Google Scholar 

  21. Robert, A., Couvreur, M.: Recent experience of connection of big arc furnaces with reference to flicker level. CIGRE Paper 36–305 (1994)

    Google Scholar 

  22. Alves, M.F., Peixoto, Z.M.A., Garcia, C.P., Gomes, D.G., Machado Neto, J.P.: An electric arc furnace model for flicker estimation. WSEAS International Conferences on Power Engineering Systems – ICOPES’05. Rio de Janeiro, Brazil (2005)

    Google Scholar 

  23. IEC Flickermeter – Functional and Design Specifications. In: IEC 61000-4-15 International Standard, Electromagnetic Compatibility (EMC) 1st edn. Part 4: Testing and Measurement Techniques Section 15 (1997)

    Google Scholar 

  24. UIE Part 5 Flicker and Voltage Flutuation. Qualit de l’alimentation “Power Quality” Working Group WG 2. Prepared by de travail GT (1999)

    Google Scholar 

  25. Miller, T.J.E.: Reactive Power Control in Electric Systems. John Wiley, New York (1982)

    Google Scholar 

  26. Larsson, T.: Voltage Source Converters for Mitigation of Flicker Caused by Arc Furnaces. Ph.D. Thesis, Department of Electric Power Engineering Division of High Power Electronics, Royal Institute of Technology, Stockholm, Sweden (1998)

    Google Scholar 

  27. Le, T.N.: Kompensation schnell vernderlicher Blindstrme eines Drehstromverbrauchers. etzArchiv, Bd. 11, H.8, pp. 249–253 German (1989)

    Google Scholar 

  28. Gomes, D.G.: Estrategia de Controle Para Mitigacao de Cintilacao Luminosa Causada por Fornos Eletricos a Arco Utilizando Compensador Estatico de Reativos. MSc Dissertation, Pontifical Catholic University of Minas Gerais Belo Horizonte Brazil (2005)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by CEMIG – Energy Company of Minas Gerais – Brazil, through Research and Development Project 048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Fabiano Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alves, M.F., Peixoto, Z.M.A. (2011). Modeling and Compensation of Flicker in Electrical Networks using Chaos Theory and SVC Systems. In: Banerjee, S., Mitra, M., Rondoni, L. (eds) Applications of Chaos and Nonlinear Dynamics in Engineering - Vol. 1. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21922-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21922-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21921-4

  • Online ISBN: 978-3-642-21922-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics