Skip to main content

Database of optical and structural data for the validation of forest radiative transfer models

  • Chapter
  • First Online:

Part of the book series: Springer Praxis Books ((PRAXIS))

Abstract

Recent advances in airborne and spaceborne scanner technologies have been providing vast amounts of multispectral and multi-angular remote sensing data of different spatial and radiometric resolution over the Earth’s vegetation. Remote sensing of forests has been one of the major interest in the remote sensing of environment, because forests impact climate, provide different kind of resources for the economy, are related to biodiversity and, on the other hand, are threatened by several anthropogenic factors and disturbances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdou, W. A., C. J. Bruegge, M. C. Helmlinger, J. E. Conel, S. H. Pilorz, W. Ledeboer, B. J. Gaitley, and K. J. Thome (2002). Vicarious calibration experiment in support of the Multi-angle Imaging SpectroRadiometer. IEEE Transactions on Geoscience and Remote Sensing, 40(7):1500–1511.

    Article  Google Scholar 

  • Banham, M. R., and A. K. Katsaggelos (1997). Digital image restoration. IEEE Signal Processing Magazine, 14(2):24–41.

    Article  Google Scholar 

  • Barnsley, M. J., J. J. Settle, M. A. Cutter, D. R. Lobb, and F. Teston (2004). The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observa- tions of the earth surface and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 42(7):1512–1520.

    Article  Google Scholar 

  • Cannizzaro, J. P., and K. L. Carder (2006). Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sensing of Environ- ment, 101 (1):13–24.

    Article  Google Scholar 

  • CHRIS (2002). The CHRIS Instrument. Web-page http://www.chris-proba.org.uk/frames/index2.html.

  • Cutter, M. (2004). Review of aspects associated with the CHRIS calibration. In Proc. of the 2nd ESA CHRIS/Proba Workshop, 28–30 April, ESRIN, Frascati, Italy, number SP-578, pages 1–5. ESA. CD-ROM.

    Google Scholar 

  • Deschamps, P. Y., F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze (1994). The POLDER mission - instrument characteristics and scientific ob- jectives. IEEE Transactions on Geoscience and Remote Sensing, 32(3):598–615.

    Article  Google Scholar 

  • Elterman, L. (1968). UV, Visible, and IR Attenuation for Altitudes to 50 km. Rep. AFCRL-68–0153. U.S. Air Force Cambridge Research Laboratory, Bedford, Mass.

    Google Scholar 

  • ESRI (2007). ESRI world basemap data. Web-page http://www.esri.com/data/download/basemap/index.html.

  • Feng, H., J. W. Campbell, M. D. Dowell, and T. S. Moore (2005). Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay. Remote Sensing of Environment, 99(3):232–243.

    Google Scholar 

  • Froidefond, J. M., L. Gardel, D. Guiral, M. Parra, and J. F. Ternon (2002). Spectral remote sensing reflectances of coastal waters in French Guiana under the Amazon influence. Remote Sensing of Environment, 80(2):225–232.

    Article  Google Scholar 

  • Hadjimitsis, D. G., C. R. I. Clayton, and V. S. Hope (2004). An assessment of the ef- fectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, 25(18):3651–3674.

    Article  Google Scholar 

  • Hoffmann, C. W., and V. A. Usoltsev (2002). Tree-crown biomass estimation in forest species of the Ural and of Kazakhstan. Forest Ecology and Management, 158(1–3):59- 69.

    Article  Google Scholar 

  • Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998). AERONET - A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1):1–16.

    Article  Google Scholar 

  • HYSPLIT (2007). HYSPLIT: HYbrid Single-Particle Lagrangian Integrated Trajectory Model Version 4.8. Web-page http://www.arl.noaa.gov/ready/hysp_info.html.

  • Järvselja (2007). Järvselja experimental and training forest district. Web page http://www.jarvselja.ee/.

  • Jennings, S. B., N. D. Brown, and D. Sheil (1999). Assessing forest canopies and un- derstorey illumination: canopy closure, canopy cover and other measures. Forestry, 72(1):59–74.

    Article  Google Scholar 

  • Johansson, T. (1999). Dry matter amount and increment in 21- to 91-year-old common alder and gray alder and some practical implications. Canadian Journal of Forest Research, 29(11):1679–1690.

    Article  Google Scholar 

  • Korhonen, L., T. K. Korhonen, M. Rautiainen, and P. Stenberg (2006). Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica, 40(4):577–588.

    Google Scholar 

  • Kostkowski, H. J. (1997). Reliable Spectroradiometry. Spectroradiometry Consulting, La Plata, MD.

    Google Scholar 

  • Kuusk, A. (1994). A multispectral canopy reflectance model. Remote Sensing of Environment, 50:75–82.

    Article  Google Scholar 

  • Kuusk, A. (1998). Monitoring of vegetation parameters on large areas by the inversion of a canopy reflectance model. International Journal of Remote Sensing, 19(15):2893- 2905.

    Article  Google Scholar 

  • Kuusk, A., and T. Nilson (2000). A directional multispectral forest reflectance model. Remote Sensing of Environment, 72(2):244–252.

    Article  Google Scholar 

  • Kuusk, J. (2011). Measurement of forest reflectance. Top-of-canopy spectral reflectance of forests for developing vegetation radiative transfer models. Lambert Academic Pub- lishing, Saarbrücken, Germany. 120 pp.

    Google Scholar 

  • Kuusk, J., A. Kuusk, M. Lang, and A. Kallis (2010). Hyperspectral reflectance of bore- onemoral forests in a dry and normal summer. International Journal of Remote Sens- ing, 31 (1):159–175.

    Article  Google Scholar 

  • Lang, M., A. Kuusk, T. Nilson, T. Lukk, M. Pehk, and G. Alm (2002). Reflectance spectra of ground vegetation in sub-boreal forests. Web page http://www.aai.ee/bgf/ger2600/

  • Lang, M., M. Jürjo, V. Adermann, and H. Korjus (2006). Integrated approach for quan- titative assessment of illegal forest fellings in Estonia. Baltic Forestry, 12(1):103–109.

    Google Scholar 

  • Liang, S. (2004). Quantitative Remote Sensing of Land Surfaces. Wiley-Interscience.

    Google Scholar 

  • Liang, S. L., H. L. Fang, and M. Z. Chen (2001). Atmospheric correction of Landsat ETM+ land surface imagery - Part I: Methods. IEEE Transactions on Geoscience and Remote Sensing, 39(11):2490–2498.

    Article  Google Scholar 

  • Marklund, L. G. (1988). Biomass Functions for Pine, Spruce and Birch in Sweden. Swedish University of Agricultural Sciences, Umeå.

    Google Scholar 

  • Martin, J. G., B. D. Kloeppel, T. L. Schaefer, D. L. Kimbler, and S. G. McNulty (1998). Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Canadian Journal of Forest Research, 28:1648–1659.

    Article  Google Scholar 

  • McGaughey, R. J. (1997). Visualizing forest stand dynamics by using the stand visu- alization system. In Proceedings ACSM/ASPRS Annual Convention and Exposition Seattle, WA. Betsheda, Vol. 4, pages 248–257. MD: American Society for Photogram- metry and Remote Sensing.

    Google Scholar 

  • McPeters, R. (2007). Total Ozone Mapping Spectrometer. Web-page http://jwocky.gsfc.nasa.gov/.

  • MODIS (2005). MODIS Atmosphere Terra Images. Web-page http://modis-atmos.gsfc.nasa.gov/IMAGES/.

  • Newcomer, J., D. Landis, S. Conrad, S. Curd, K. Huemmrich, D. Knapp, A. Morrell, J. Nickeson, A. Papagno, D. Rinker, R. Strub, T. Twine, F. Hall, and P. Sellers, editors (2000). Collected Data of The Boreal Ecosystem-Atmosphere Study. NASA. CD-ROM.

    Google Scholar 

  • Niinemets, U., and K. Kull (1994). Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability. Forest Ecology a,nd, Management, 70:1–10.

    Article  Google Scholar 

  • Nilson, T., and A. Kuusk (2004). Improved algorithm for estimating canopy indices from gap fraction data in forest canopies. Agricultural and Forest Meteorology, 124(3- 4):157–169.

    Article  Google Scholar 

  • Novo, E. M. L. M., W. Pereira, and J. M. Melack (2004). Assessing the utility of spectral band operators to reduce the influence of total suspended solids on the relationship between chlorophyll concentration and the bidirectional reflectance factor in Amazon waters. International Journal of Remote Sensing, 25(22):5105–5116.

    Article  Google Scholar 

  • Pensa, M., and A. Sellin (2002). Needle longevity of Scots pine in relation to foliar nitrogen content, specific leaf area, and shoot growth in different forest types. Canadian Journal of Forest Research, 32(7):1225–1231.

    Article  Google Scholar 

  • Podilchuk, C. (1998). Signal recovery from partial information. In V. K. Madisetti and D. B. Williams, editors, Signal Processing Handbook, pages 25–1 to 25–21. CRC Press LLC, Boca Raton, Florida 33431, USA.

    Google Scholar 

  • R-project (2007). The R Project for Statistical Computing. Web-page http://www.r-project.org/.

  • Rabiner, L. R., and B. Gold (1975). Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Rautiainen, M., P. Stenberg, T. Nilson, and A. Kuusk (2004). The effect of crown shape on the reflectance of coniferous stands. Remote Sensing of Environment, 89(1):41–52.

    Article  Google Scholar 

  • Reinersman, P. N., and K. L. Carder (1995). Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect. Applied Optics, 34(21):4453–4471.

    Article  Google Scholar 

  • Schaepman, M., and S. Dangel (2000). Solid laboratory calibration of a nonimaging spectroradiometer. Applied Optics, 39:3754–3764.

    Article  Google Scholar 

  • Sellin, A. (2000). Estimating the needle area from geometric measurements: Application of different calculation methods to Norway spruce. Trees, 14(4):215–222, 819.

    Google Scholar 

  • Slater, P. N., and S. F. Biggar (1996). Suggestions for radiometric calibration coefficient generation. Journal of Atmospheric and Oceanic Technology, 13(2):376–382.

    Article  Google Scholar 

  • Slater, P. N., S. F. Biggar, K. J. Thome, D. I. Gellman, and P. R. Spyak (1996). Vi- carious radiometric calibrations of EOS sensors. Journal of Atmospheric and Oceanic Technology, 13(2):349–359.

    Article  Google Scholar 

  • Song, C. H., and C. E. Woodcock (2003). Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Transactions on Geoscience and Remote Sensing, 41(11):2557–2567.

    Article  Google Scholar 

  • Tamm, U. (2000). Aspen in Estonia. Eesti Loodusfoto, Tartu.

    Google Scholar 

  • Thome, K., B. Markham, J. Barker, P. Slater, and S. Biggar (1997). Radiometric calibration of Landsat. Photogrammetric Engineering and Remote Sensing, 63(7):853–858.

    Google Scholar 

  • VALERI (2005). Web page http://www.avignon.inra.fr/valeri/, accessed on March 15, 2005.

  • Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J.-J. Morcrette (1997). Sec- ond simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Transactions on Geoscience and Remote Sensing, 35(3):675–686.

    Article  Google Scholar 

  • Wang, C. (2006). Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 222:9-V16.

    Article  Google Scholar 

  • Wendlandt, W. W., and H. G. Hecht (1966). Reflectance Spectroscopy. Wiley.

    Google Scholar 

  • Widlowski, J. L., M. M. Verstraete, B. Pinty, and N. Gobron (2003). Allometric Relation- ships of Selected European Tree Species. Tech. rep., EC Joint Research Centre, Ispra, Italy.

    Google Scholar 

  • Widlowski, J. L., M. Taberner, B. Pinty, V. Bruniquel-Pinel, M. Disney, R. Fernandes, J. P. Gastellu-Etchegorry, N. Gobron, A. Kuusk, T. Lavergne, S. Leblanc, P. E. Lewis, E. Martin, M. Mottus, P. R. J. North, W. Qin, M. Robustelli, N. Rochdi, R. Ruiloba, C. Soler, R. Thompson, W. Verhoef, M. M. Verstraete, and D Xie (2007). Third radiation transfer model intercomparison (RAMI) exercise: Docu- menting progress in canopy reflectance models. Journal of Geophysical Research- Atmospheres, 112(D9):D09111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Kuusk .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Kuusk, A., Lang, M., Kuusk, J. (2013). Database of optical and structural data for the validation of forest radiative transfer models. In: Light Scattering Reviews 7. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21907-8_4

Download citation

Publish with us

Policies and ethics