Skip to main content

Virtual Reality and Hybrid Technology for Neurorehabilitations

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Abstract

Disabilities that follow Cerebrovascular accidents (CVA) and spinal cord injuries (SCI) severely impair motor functions and thereby prevent the affected individuals from full and autonomous participation in daily activities. Several studies have shown that virtual reality (VR) is a technology suitable for rehabilitation therapy due to its inherent ability of simulating real–life tasks while improving patient motivation. In this paper we present our research focuses on the development of a new rehabilitation therapy based on a VR system combined with wearable neurorobotics (NR), motor-neuroprosthetics (MNP) and brain neuro-machine interface (BNMI). This solution, based on hybrid technology aims to overcome the major limitations of the current available therapies. This paper is focused on the Virtual Reality concepts used for the development of the HYPER rehabilitation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dobkin, B.: Rehabilitation after stroke. New England Journal of Medicine 352, 1677–1684 (2005)

    Article  Google Scholar 

  2. Johansson, B.: Brain plasticity and stroke rehabilitation. The willis lecture, Stroke 31, 223–230 (2000)

    Article  Google Scholar 

  3. Weiss, P., Kizony, R., Feintuch, U., Katz, N.: Virtual reality in neurorehabilitation. Textbook of neural repair and neurorehabilitation 2, 182–197 (2006)

    Article  Google Scholar 

  4. Fidopiastis, C., et al.: Human experience modeler: Context-driven cognitive retraining to facilitate transfer of learning. CyberPsychology & Behavior 9, 183–187 (2006)

    Article  Google Scholar 

  5. Cano de la Cuerda, R., et al.: Telerrehabilitacin y neurologa. Rev. Neurol. 51, 49–56 (2010)

    Google Scholar 

  6. Rizzo, A., Kin, G.: A swot analysis of the field of vr rehabilitation and therapy. Presence: Teleoperators and Virtual Environments 14, 119–146 (2005)

    Article  Google Scholar 

  7. Viau, A., et al.: Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. Journal of neuroengineering and rehabilitation, 1 (December 2004)

    Google Scholar 

  8. Subramanian, S., et al.: Virtual reality environments for post-stroke arm rehabilitation. Journal of neuroengineering and rehabilitation 4 (2007)

    Google Scholar 

  9. Kuttuva, M., et al.: The rutgers arm: an upper-extremity rehabilitation system in virtual reality. In: 4th International workshop on virtual reality rehabilitation, Catalina Islands, Citeseer (2005)

    Google Scholar 

  10. Fugl-Meyer, A., et al.: The post-stroke hemiplegic patient: a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine,vol 7, 13–31 (1975)

    Google Scholar 

  11. Boian, R., et al.: Virtual reality-based system for ankle rehabilitation post stroke. In: Proceedings of the First International Workshop on Virtual Reality Rehabilitation, Citeseer, pp. 77–86 (2002)

    Google Scholar 

  12. Koenig, A., et al.: Virtual gait training for children with cerebral palsy using the lokomat gait orthosis. Medicine meets virtual reality 16 (2008)

    Google Scholar 

  13. Colombo, G., et al.: Driven gait orthosis to do locomotor training of paraplegic patients. In:Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3159–3163 (2000), doi: 10.1109/IEMBS.2000.901556

    Google Scholar 

  14. Hesse, S.: Locomotor therapy in neurorehabilitation. Neuro Rehabilitation 16, 133–139 (2001)

    Google Scholar 

  15. Veneman, J.F., et al.: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation, vol.15, pp. 379–386 (2007)

    Google Scholar 

  16. Lam, T., et al.: Lower limb rehabilitation following spinal cord injury. In: Eng, J.J., Teasell, R.W., Miller, W.C., Wolfe, D.L., Townson, A.F., Hsieh, J.T.C., Connolly, S.J., Mehta, S., Sakakibara, B.M. (eds.) Spinal Cord Injury Rehabilitation Evidence, pp. 1–47 (2010)

    Google Scholar 

  17. Mehta, S., et al.: Rehabilitation practice and associated outcomes following spinal cord injury. In: Eng, J.J., Teasell, R.W., Miller, W.C., Wolfe, D.L., Townson, A.F., Hsieh, J.T.C., Connolly, S.J., Mehta, S., Sakakibara, B.M. (eds.) Spinal Cord Injury Rehabilitation Evidence (2010)

    Google Scholar 

  18. Dietz, V.: Spinal cord pattern generators for locomotion. Clin. Neurophysiol. 114, 1379–1389 (2003)

    Article  Google Scholar 

  19. MacKay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82, 69–83 (2002)

    Article  Google Scholar 

  20. Maclean, N., Pound, P., Wolfe, C., Rudd, A.: Qualitative analysis of stroke patients’ motivation. BMJ 321, 1051–1054 (2000)

    Article  Google Scholar 

  21. Colombo, R., Pisano, F., Mazzone, A., Delconte, C., Micera, S., Carrozza, M.C., Dario, P., Minuco, G.: “Design strategies to improve patient motivation during robot-aided rehabilitation. Journal of NeuroEngineering and Rehabilitation 4(3) (2007), doi:10.1186/1743-0003-4-3

    Google Scholar 

  22. Emken, J.L., Bobrow, J.E., Reinkensmeyer, D.J.: Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: 9th International Conference on Rehabilitation Robotics ICORR 2005, June 1–July, pp. 307–312 (2005)

    Google Scholar 

  23. Weiss, A., Suzuki, T., Bean, J., Fielding, R.A.: High intensity strength training improves strength and functional performance after stroke. Am J. Phys. Med. Rehabil. 79, 369–376 (2000)

    Article  Google Scholar 

  24. Lünenburger, L., Colombo, G., Riener, R.: Biofeedback for robotic gait rehabilitation. Journal of NeuroEngineering and Rehabilitation 4 (2007), doi:10.1186/1743-0003-4-1

    Google Scholar 

  25. Pons, J.L.: Rehabilitation exoskeletal robotics. IEEE Engineering in Medicine and Biology Magazine 29, 57–63 (2010)

    Article  Google Scholar 

  26. Pons, J.L.: Wearable Robots: Biomechatronic exoskeletons. John Wiley & Sons, Chichester (2008)

    Book  Google Scholar 

  27. Kazerooni, H.: Human–robot interaction via the transfer of power and information signals. IEEE Transactions on Systems, Man, and Cybernetics 20, 450–463 (1990)

    Article  Google Scholar 

  28. Gallego, J.A., Rocon, E., Ibanez, J., Dideriksen, J.L., Koutsou, A.D., Paradiso, R., Popovic, M.B., Belda–Lois, J.M., Gianfelici, F., Farina, D., Manto, M., Pons, J.L.: A Soft Wearable Robot for Tremor Assessment and Suppression. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (2011) (accepted)

    Google Scholar 

  29. Leuthardt, E.C., Schalk, G., Roland, J., Rouse, A., Moran, D.W.: Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg. Focus 27 (July 2009)

    Google Scholar 

  30. Gert, P., Reinhold, S.: Brain-Computer Interfaces used for Virtual Reality Control. In: ICABB 2010 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Mauro, A. et al. (2011). Virtual Reality and Hybrid Technology for Neurorehabilitations. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21898-9_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21897-2

  • Online ISBN: 978-3-642-21898-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics