Skip to main content

A Comparison of Different Advective Solvers in the CHIMERE Air Quality Model

  • Conference paper
Computational Science and Its Applications - ICCSA 2011 (ICCSA 2011)

Abstract

Extensive research has been performed to solve the advection equation and different numerical methods have been proposed. Most of these methods, including semi-lagrangian methods, are not conservative. In this paper we compare in the CHIMERE eulerian chemistry transport model different conservative algorithms for solving the advection equation. The numerical results are compared with a set of observation sites in the area of Spain and some conclusions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Godunov, S.K.: A difference scheme for numerical computation of discontinuous solutions of hydrodynamics equations. Math. Sbornik 47, 271–306 (1959)

    MATH  Google Scholar 

  2. van Leer, B.: Toward the ultimate conservative difference scheme. Part IV: A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1997)

    Article  MATH  Google Scholar 

  3. van Leer, B.: Toward the ultimate conservative difference scheme. Part V: A second order sequel to Godunov’s method. J. Comput. Phys. 23, 276–299 (1997)

    Article  Google Scholar 

  4. Collela, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  MATH  Google Scholar 

  5. Gavete, L., García Vivanco, M., Molina, P., Gavete, M.L., Ureña, F., Benito, J.J.: Implementation in Chimère of a conservative solver for the advection equation. In: Proceedings of the 10th International Conference on Mathematical Methods in Science and Engineering, vol. IV, pp. 1094–1105. CMMSE, Almería (2010), ISBN 13: 978-84-613-5510-5

    Google Scholar 

  6. Le Veque, R.J.: Numerical Methods for Conservation Laws. Birkuser Verlag (1990)

    Google Scholar 

  7. Verwer, J.G.: A Gauss-Seidel iteration for stiff ODEs from chemical kinetics. SIAM J. Scientific Computing 15, 1243–1250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Schmidt, H., Derognat, C., Vautard, R., Beekmann, M.: A comparision of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmospheric Environment 35, 6277–6297 (2001)

    Article  Google Scholar 

  9. Vivanco, M.G., Palomino, I., Vautard, R., Bessagnet, B., Martín, F., Menut, L., Jiménez, S.: Multi-year assessment of photochemical air quality simulation over SPAIN. Environmental Modelling & Software 24, 63–73 (2009)

    Article  Google Scholar 

  10. Hauglustaine, D.A., Hourdin, F., Jourdain, L., Filiberti, M.A., Walters, S., Lamarque, J.F., Holland, E.A.: Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res. 109 (2004), doi:10.1029/2003JD003957

    Google Scholar 

  11. Chin, M., Ginoux, P., Kinne, S., Holben, B.N., Duncan, B.N., Martin, R.V., Logan, J.A., Higurashi, A., Nakajima, T.: Tropospheric aerosol optical thickness fromt he GOCART model and comparisons with satellite and sunphotometer measurements. J. Atmos. Sci. 59, 461–483 (2002)

    Article  Google Scholar 

  12. Vestreng, V., Breivik, K., Adams, M., Wagener, A., Goodwin, J., Rozovskkaya, O., Pacyna, J.M.: Inventory Review 2005, Emission Data reported to LRTAP Convention and NEC Directive, Initial review of HMs and POPs. Technical report MSC-W 1/(2005), ISSN 0804-2446

    Google Scholar 

  13. Passant, N.R.: Speciation of UK Emissions of Non-methane Volatile Organic Compounds. AEAT/ENV/R/0545 (1) (2000)

    Google Scholar 

  14. Tesche, T.W., Georgopoulos, P., Seinfeld, J.H., Cass, G., Lurmann, F.W., Roth, P.M.: Improvement of Procedures for Evaluating Photochemical Models. Draft Final Report Prepared for California Air Resources Board. Radian, Sacramento (1990)

    Google Scholar 

  15. Vivanco, M.G., Correa, M., Azula, O., Palomino, I., Martín, F.: Influence of Model Resolution on Ozone Predictions over Madrid Area (Spain). In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 165–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Molina, P. et al. (2011). A Comparison of Different Advective Solvers in the CHIMERE Air Quality Model. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21898-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21898-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21897-2

  • Online ISBN: 978-3-642-21898-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics