Skip to main content

Preclinical Models that Illuminate the Bone Metastasis Cascade

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 192))

Abstract

In this chapter currently available preclinical models of tumor progression and bone metastasis, including genetically engineered mice that develop primary and metastatic carcinomas and transplantable animal models, will be described. Understanding the multistep process of incurable bone metastasis is pivotal to the development of new therapeutic strategies. Novel technologies for imaging molecules or pathologic processes in cancers and their surrounding stroma have emerged rapidly and have greatly facilitated cancer research, in particular the cellular behavior of osteotropic tumors and their response to new and existing therapeutic agents. Optical imaging, in particular, has become an important tool in preclinical bone metastasis models, clinical trials and medical practice. Advances in experimental and clinical imaging will—in the long run—result in significant improvements in diagnosis, tumor localization, enhanced drug delivery and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    PubMed  CAS  Google Scholar 

  • An Z, Wang X, Geller J, Moossa AR, Hoffman RM (1998) Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice. Prostate 34:169–174

    Article  PubMed  CAS  Google Scholar 

  • Arguello F, Baggs RB, Frantz CN (1988) A murine model of experimental metastasis to bone and bone marrow. Cancer Res 48:6876–6881

    PubMed  CAS  Google Scholar 

  • Asamoto M, Hokaiwado N, Cho YM, Takahashi S, Ikeda Y, Imaida K et al (2001) Prostate carcinomas developing in transgenic rats with SV40 T antigen expression under probasin promoter control are strictly androgen dependent. Cancer Res 61:4693–4700

    PubMed  CAS  Google Scholar 

  • Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99:377–382

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick NA, Moses HL (2005) Tumor-stroma interactions. Curr Opin Genet Dev 15:97–101

    Article  PubMed  CAS  Google Scholar 

  • Black PC, Shetty A, Brown GA, Esparza-Coss E, Metwalli AR, Agarwal PK et al (2010) Validating bladder cancer xenograft bioluminescence with magnetic resonance imaging: the significance of hypoxia and necrosis. BJU Int 106:1799–1804

    Google Scholar 

  • Blakely CM, Sintasath L, D’Cruz CM, Hahn KT, Dugan KD, Belka GK et al (2005) Developmental stage determines the effects of MYC in the mammary epithelium. Development 132:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743–748

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121:1064–1074

    Article  PubMed  CAS  Google Scholar 

  • Buijs JT, van der Pluijm G (2009) Osteotropic cancers: from primary tumor to bone. Cancer Lett 273:177–193

    Article  PubMed  CAS  Google Scholar 

  • Buijs JT, Rentsch CA, van der Horst G, van Overveld PG, Wetterwald A, Schwaninger R et al (2007a) BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am J Pathol 171:1047–1057

    Article  CAS  Google Scholar 

  • Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R et al (2007b) Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 67:8742–8751

    Article  PubMed  CAS  Google Scholar 

  • Buijs JT, Cheung H, Doumont G, Derksen PW, Jonkers J, van der Pluijm G (2010) A new mouse model of invasive lobular carcinoma of the breast representative of the multi-step process of bone metastasis and minimal residual disease micrometastasis. Bone 47:S282

    Google Scholar 

  • Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014

    Article  PubMed  Google Scholar 

  • Cao F, Drukker M, Lin S, Sheikh AY, Xie X, Li Z et al (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9:107–117

    Article  PubMed  CAS  Google Scholar 

  • Caysa H, Jacob R, Muther N, Branchini B, Messerle M, Soling A (2009) A redshifted codon-optimized firefly luciferase is a sensitive reporter for bioluminescence imaging. Photochem Photobiol Sci 8:52–56

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  • Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    Article  PubMed  CAS  Google Scholar 

  • Contag PR, Olomu IN, Stevenson DK, Contag CH (1998) Bioluminescent indicators in living mammals. Nat Med 4:245–247

    Article  PubMed  CAS  Google Scholar 

  • Cowey S, Szafran AA, Kappes J, Zinn KR, Siegal GP, Desmond RA et al (2007) Breast cancer metastasis to bone: evaluation of bioluminescent imaging and microSPECT/CT for detecting bone metastasis in immunodeficient mice. Clin Exp Metastasis 24(5):389–401

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz CM, Gunther EJ, Boxer RB, Hartman JL, Sintasath L, Moody SE et al (2001) c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 7:235–239

    Article  PubMed  Google Scholar 

  • Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 105:437–449

    Article  CAS  Google Scholar 

  • Derksen PW, Braumuller TM, van der Burg E, Hornsveld M, Mesman E, Wesseling J et al (2011) Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis Model Mech 4:347–358

    Article  PubMed  CAS  Google Scholar 

  • Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S et al (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    Google Scholar 

  • Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Franzius C, Hotfilder M, Poremba C, Hermann S, Schäfers K, Gabbert HE, Jürgens H, Schober O, Schäfers M, Vormoor J (2006) Successful high-resolution animal positron emission tomography of human Ewing tumours and their metastases in a murine xenograft model. Eur J Nucl Med Mol Imaging 33(12):1432–1441

    Article  PubMed  Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    PubMed  CAS  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457

    Article  PubMed  CAS  Google Scholar 

  • Futakuchi M, Nannuru KC, Varney ML, Sadanandam A, Nakao K, Asai K et al (2009) Transforming growth factor-beta signaling at the tumor-bone interface promotes mammary tumor growth and osteoclast activation. Cancer Sci 100:71–81

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M et al (2004) A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 101:17204–17209

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JR, Greenberg NM (1996) A transgenic mouse prostate cancer model. Toxicol Pathol 24:502–504

    Article  PubMed  CAS  Google Scholar 

  • Graves EE, Weissleder R, Ntziachristos V (2004) Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4:419–430

    Article  PubMed  CAS  Google Scholar 

  • Gunther EJ, Belka GK, Wertheim GB, Wang J, Hartman JL, Boxer RB et al (2002) A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J 16:283–292

    Article  PubMed  CAS  Google Scholar 

  • Henriquez NV, van Overveld PG, Que I, Buijs JT, Bachelier R, Kaijzel EL et al (2007) Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24:699–705

    Article  PubMed  Google Scholar 

  • Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79

    Article  PubMed  CAS  Google Scholar 

  • Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA et al (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872

    Article  PubMed  CAS  Google Scholar 

  • Hirbe AC, Roelofs AJ, Floyd DH, Deng H, Becker SN, Lanigan LG et al (2009) The bisphosphonate zoledronic acid decreases tumor growth in bone in mice with defective osteoclasts. Bone 44(5):908–916

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RM (2009) Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin Exp Metastasis 26:345–355

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (2007) Cell-matrix adhesion in vascular development. J Thromb Haemost 5(suppl 1):32–40

    Google Scholar 

  • Ip C (1996) Mammary tumorigenesis and chemoprevention studies in carcinogen-treated rats. J Mammary Gland Biol Neoplasia 1:37–47

    Article  PubMed  CAS  Google Scholar 

  • Izbicka E, Dunstan CR, Horn D, Harris M, Harris S, Adams R, Mundy GR (1997) Effects of human tumor cell lines on local new bone formation in vivo. Calcif Tissue Int 602:210–215

    Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  CAS  Google Scholar 

  • Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Kaijzel EL, van der Pluijm G, Lowik CW (2007) Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 13:3490–3497

    Article  PubMed  Google Scholar 

  • Kaijzel EL, Snoeks TJ, Buijs JT, van der Pluijm G, Lowik CW (2009) Multimodal imaging and treatment of bone metastasis. Clin Exp Metastasis 26:371–379

    Article  PubMed  CAS  Google Scholar 

  • Katz MH, Takimoto S, Spivack D, Moossa AR, Hoffman RM, Bouvet M (2003) A novel red fluorescent protein orthotopic pancreatic cancer model for the preclinical evaluation of chemotherapeutics. J Surg Res 113:151–160

    Article  PubMed  CAS  Google Scholar 

  • Keller ET, Brown J (2004) Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91:718–729

    Article  PubMed  CAS  Google Scholar 

  • Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26:513–523

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM et al (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 99:2884–2889

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Stein R, O’Hare MJ (2005) Tumour-stromal interactions in breast cancer: the role of stroma in tumourigenesis. Tumour Biol 26:173–185

    Article  PubMed  Google Scholar 

  • Kim JB, Urban K, Cochran E, Lee S, Ang A, Rice B, et al (2010) Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One 5:e9364

    Google Scholar 

  • Kim J, Roh M, Doubinskaia I, Algarroba GN, Eltoum IE, Abdulkadir SA (2011) A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 20:1–11

    Google Scholar 

  • Korenchuk S, Lehr JE, MClean L, Lee YG, Whitney S, Vessella R et al (2001) VCaP, a cell-based model system of human prostate cancer. In Vivo 15:163–168

    PubMed  CAS  Google Scholar 

  • Kozloff KM, Weissleder R, Mahmood U (2007) Noninvasive optical detection of bone mineral. J Bone Miner Res 22:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Kozloff KM, Quinti L, Patntirapong S, Hauschka PV, Tung CH, Weissleder R et al (2009) Non-invasive optical detection of cathepsin K-mediated fluorescence reveals osteoclast activity in vitro and in vivo. Bone 44:190–198

    Article  PubMed  CAS  Google Scholar 

  • Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  • Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP et al (2005) A mouse model of human breast cancer metastasis to human bone. Cancer Res 65:6130–6138

    Article  PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH et al (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA 89:6232–6236

    Article  PubMed  CAS  Google Scholar 

  • Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A et al (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608–2612

    Article  PubMed  CAS  Google Scholar 

  • Lehr HA, Leunig M, Menger MD, Nolte D, Messmer K (1993) Dorsal skinfold chamber technique for intravital microscopy in nude mice. Am J Pathol 143:1055–1062

    PubMed  CAS  Google Scholar 

  • Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2:743–755

    Article  PubMed  CAS  Google Scholar 

  • Lynch CC, Hikosaka A, Acuff HB, Martin MD, Kawai N, Singh RK et al (2005) MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7:485–496

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

  • McCabe NP, De S, Vasanji A, Brainard J, Byzova TV (2007) Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene 26:6238–6243

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JR, Bhaumik J, Karver MR, Sibel ES, Weissleder R (2010) Targeted nanoagents for the detection of cancers. Mol Oncol 4:511–528

    Article  PubMed  CAS  Google Scholar 

  • Megason SG, Fraser SE (2007) Imaging in systems biology. Cell 130:784–795

    Article  PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes––bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593

    Article  PubMed  CAS  Google Scholar 

  • Naef F, Huelsken J (2005) Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucl Acids Res 19:e111

    Article  CAS  Google Scholar 

  • Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L et al (2010) Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 107:7910–7915

    Article  PubMed  Google Scholar 

  • Nakai M, Mundy GR, Williams PJ, Boyce B, Yoneda T (1992) A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res 52(19):5395–5399

    PubMed  CAS  Google Scholar 

  • Nakamura I, Duong lT, Rodan SB, Rodan GA (2007) Involvement of alphav)beta3 integrins in osteoclast function. J Bone Miner Metab 25:337–344

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu T, Ichiyama S, Hiratake J, Saldanha A, Kobashi N, Sakata K et al (2006) Structural basis for the spectral difference in luciferase bioluminescence. Nature 440:372–376

    Article  PubMed  CAS  Google Scholar 

  • Nannuru KC, Futakuchi M, Sadanandam A, Wilson TJ, Varney ML, Myers KJ et al (2009) Enhanced expression and shedding of receptor activator of NF-kappaB ligand during tumor-bone interaction potentiates mammary tumor-induced osteolysis. Clin Exp Metastasis 26:797–808

    Article  PubMed  CAS  Google Scholar 

  • Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK (2010) Matrix metalloproteinase MMP-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res 70:3494–3504

    Article  PubMed  CAS  Google Scholar 

  • Nemeth JA, Harb JF, Barroso U Jr, He Z, Grignon DJ, Cher ML (1999) Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 59:1987–1993

    PubMed  CAS  Google Scholar 

  • Nicholson B, Theodorescu D (2004) Angiogenesis and prostate cancer tumor growth. J Cell Biochem 91:125–150

    Article  PubMed  CAS  Google Scholar 

  • O’Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT (2010) Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 220:317–327

    PubMed  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    Google Scholar 

  • Peyruchaud O, Serre CM, NicAmhlaoibh R, Fournier P, Clezardin P (2003) Angiostatin inhibits bone metastasis formation in nude mice through a direct anti-osteoclastic activity. J Biol Chem 278:45826–45832

    Article  PubMed  CAS  Google Scholar 

  • Pollard M (1998) Lobund-Wistar rat model of prostate cancer in man. Prostate 37:1–4

    Article  PubMed  CAS  Google Scholar 

  • Pollard M, Wolter WR, Sun L (2000) Prostate-seminal vesicle cancers induced in noble rats. Prostate 43:71–74

    Article  PubMed  CAS  Google Scholar 

  • Power CA, Pwint H, Chan J, Cho J, Yu Y, Walsh W et al (2009) A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate 69:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumor model. Curr Protoc Immunol Chap. 20:Unit 20.2

    Google Scholar 

  • Reeves K, van der Pluijm G, Cecchini MG, Eaton CL, Hamdy FC, Brown ND (2010) A new in vivo model of prostate cancer metastasis to bone. Bone. 47:S282

    Google Scholar 

  • Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH et al (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2:491–495

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Porcel M, Wu, JC, Gambhir, SS (2009) Molecular imaging of stem cells (July 30, 2009). Stembook (ed) The stem cell research community, stembook. doi:10.3824/stembook.1.49.1, http://www.stembook.org

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Rosol TJ, Tannehill-Gregg SH, Corn S, Schneider A, McCauley LK (2004) Animal models of bone metastasis. Cancer Treat Res 18:47–81

    Google Scholar 

  • Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A et al (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3:887–889

    Article  PubMed  CAS  Google Scholar 

  • Santos EB, Yeh R, Lee J, Nikhamin Y, Punzalan B, Punzalan B et al (2009) Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 15:338–344

    Article  PubMed  CAS  Google Scholar 

  • Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    Article  PubMed  CAS  Google Scholar 

  • Schroeder T (2008) Imaging stem-cell-driven regeneration in mammals. Nature 453:345–351

    Article  PubMed  CAS  Google Scholar 

  • Sckell A, Leunig M (2009) The dorsal skinfold chamber: studying angiogenesis by intravital microscopy. Methods Mol Biol 467:305–317

    Google Scholar 

  • Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, van Bezooijen RL, van der Pluijm G et al (2007) Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol 170:160–175

    Article  PubMed  CAS  Google Scholar 

  • Serganova I, Moroz E, Vider J, Gogiberidze G, Moroz M, Pillarsetty N et al (2009) Multimodality imaging of TGFbeta signaling in breast cancer metastases. FASEB J 23:2662–2672

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2:215–225

    Article  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  PubMed  CAS  Google Scholar 

  • Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Brown PH (2005) Transgenic mouse models for the prevention of breast cancer. Mutat Res 576:93–110

    Article  PubMed  CAS  Google Scholar 

  • Shtivelman E, Namikawa R (1995) Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc Natl Acad Sci USA 92:4661–4665

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Johnson L (2006) Using genetically engineered mouse models of cancer to aid drug development: an industry perspective. Clin Cancer Res 12:5312–5328

    Article  PubMed  CAS  Google Scholar 

  • Snoeks TJ, Lowik CW, Kaijzel EL (2010) ‘In vivo’ optical approaches to angiogenesis imaging. Angiogenesis 13:135–147

    Article  PubMed  CAS  Google Scholar 

  • Snoeks TJ, Khmelinskii A, Lelieveldt BP, Kaijzel EL, Lowik CW (2011) Optical advances in skeletal imaging applied to bone metastases. Bone 48:106–114

    Article  PubMed  CAS  Google Scholar 

  • Stoica G, Koestner A, Capen CC (1983) Characterization of N-ethyl-N-nitrosourea–induced mammary tumors in the rat. Am J Pathol 110:161–169

    PubMed  CAS  Google Scholar 

  • Stoica G, Koestner A, Capen CC (1984) Neoplasms induced with high single doses of N-ethyl-N-nitrosourea in 30-day-old Sprague-Dawley rats, with special emphasis on mammary neoplasia. Anticancer Res 4:5–12

    PubMed  CAS  Google Scholar 

  • Strube A, Stepina E, Mumberg D, Scholz A, Hauff P, Käkönen SM (2010) Characterization of a new renal cell carcinoma bone metastasis mouse model. Clin Exp Metastasis 27(5):319–330

    Article  PubMed  CAS  Google Scholar 

  • Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11:435–443

    Article  PubMed  CAS  Google Scholar 

  • Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8:228

    Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  PubMed  CAS  Google Scholar 

  • Thalmann GN, Sikes RA, Wu TT, Degeorges A, Chang SM, Ozen M et al (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44:91–103

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (2003) Imagining imaging’s future. Nat Rev Mol Cell Biol Suppl:SS16–SS21

    Google Scholar 

  • Tu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, Shyr Y et al (2003) The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 5:267–277

    PubMed  CAS  Google Scholar 

  • van der Bogt KE, Swijnenburg RJ, Cao F, Wu JC (2006) Molecular imaging of human embryonic stem cells: keeping an eye on differentiation, tumorigenicity and immunogenicity. Cell Cycle 5:2748–2752

    Article  PubMed  Google Scholar 

  • van Haperen R, Cheng C, Mees BM, van DE, de Waard M, van Damme LC et al (2003) Functional expression of endothelial nitric oxide synthase fused to green fluorescent protein in transgenic mice. Am J Pathol 163:1677–1686

    Google Scholar 

  • van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173

    Article  PubMed  CAS  Google Scholar 

  • van der Horst G, van Asten JJ, Figdor A, van den Hoogen C, Cheung H, Bevers RF et al (2011a) Real-time cancer cell tracking by bioluminescence in a preclinical model of human bladder cancer growth and metastasis. Eur Urol 60:337–343

    Article  Google Scholar 

  • van der Horst G, van den Hoogen C, Buijs JT, Cheung H, Bloys H, Pelger RC et al (2011b) Targeting of alphav)-integrins in stem/progenitor cells and supportive microenvironment impairs bone metastasis in human prostate cancer. Neoplasia 13:516–525

    Google Scholar 

  • van der Pluijm G (2010) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48:37–43

    Google Scholar 

  • van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C (2001) Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res 16:1077–1091

    Article  PubMed  Google Scholar 

  • van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A et al (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65:7682–7690

    PubMed  Google Scholar 

  • Virostko J, Jansen ED (2009) Validation of bioluminescent imaging techniques. Methods Mol Biol 574:15–23

    Google Scholar 

  • Visvader JE (2011) Cells of origin in cancer. Nature 20:314–322

    Article  CAS  Google Scholar 

  • Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al (2003) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Xia TS, Liu XA, Ding Q, Du Q, Yin H et al (2010) A novel orthotopic and metastatic mouse model of breast cancer in human mammary microenvironment. Breast Cancer Res Treat 120:337–344

    Article  PubMed  Google Scholar 

  • Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    Article  PubMed  CAS  Google Scholar 

  • Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M et al (2002) Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 160(3):1143–1153

    Article  PubMed  Google Scholar 

  • Winter SF, Cooper AB, Greenberg NM (2003) Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis 6:204–211

    Article  PubMed  CAS  Google Scholar 

  • Xia TS, Wang J, Yin H, Ding Q, Zhang YF, Yang HW et al (2010) Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncol Rep 24:203–211

    PubMed  Google Scholar 

  • Xia TS, Wang GZ, Ding Q, Liu XA, Zhou WB, Zhang YF et al (2011) Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat. 3 Jan 2011 [Epub ahead of print]

    Google Scholar 

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW et al (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395

    Article  PubMed  CAS  Google Scholar 

  • Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Li L, Jiang P, Moossa AR, Penman S, Hoffman RM (2003) Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA 100:14259–14262

    Article  PubMed  CAS  Google Scholar 

  • Yonou H, Yokose T, Kamijo T, Kanomata N, Hasebe T, Nagai K et al (2001) Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res 61:2177–2182

    PubMed  CAS  Google Scholar 

  • Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Fang Z, Contag PR, Purchio AF, West DB (2004) Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse. Blood 103:617–626

    Google Scholar 

  • Zhang Q, Yin L, Tan Y, Yuan Z, Jiang H (2008) Quantitative bioluminescence tomography guided by diffuse optical tomography. Opt Express 16:1481–1486

    Article  PubMed  Google Scholar 

  • Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66:7889–7898

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Henry Cheung (Leiden Univ. Med. Ctr., dept. Urology, Leiden, the Netherlands) and Mr. Ivo Que (Leiden Univ. Med. Ctr., Dept. Endocrinology, Leiden, the Netherlands) for real-time optical imaging of osteotropic cancer cells in vivo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabri van der Pluijm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Horst, G., van der Pluijm, G. (2012). Preclinical Models that Illuminate the Bone Metastasis Cascade. In: Joerger, M., Gnant, M. (eds) Prevention of Bone Metastases. Recent Results in Cancer Research, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21892-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21892-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21891-0

  • Online ISBN: 978-3-642-21892-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics