Skip to main content

The Nature and Origin of Time-Asymmetric Spacetime Structures

  • Chapter
  • First Online:
Physik ohne Realität: Tiefsinn oder Wahnsinn?
  • 2963 Accesses

Abstract

Time-asymmetric spacetime structures, in particular those representing black holes and the expansion of the universe, are intimately related to other arrows of time, such as the second law and the retardation of radiation. The nature of the quantum arrow, often attributed to a collapse of the wave function, is also essential to understand the much discussed “black hole information loss paradox”. The master arrow that would combine all arrows of time does not have to be identified with the direction of a formal time parameter that would allow us to formulate the dynamics as a succession of global states (a trajectory in configuration space). It may even change direction with respect to a fundamental physical clock, such as the cosmic expansion parameter, if this were extrapolated to negative “pre-big-bang” values.

Dieser Beitrag wurde 2010 für das Oxford Handbook of Spacetime (Hrsg. Vesselin Petkov) geschrieben, dessen Erscheinen derzeit nicht absehbar ist. Aus diesem Grunde, und da er vorwie- gend an Physiker gerichtet ist, habe ich ihn hier nicht übersetzt. S. a. arxiv/1012.4708.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By “lead to” I mean here a (timeless) logical inference – not a causal relation that might already require an arrow of time.

References

  1. H.D. Zeh, The Physical Basis of the Direction of Time, 5th edn. (Springer, 2007), Chap. 2.

  2. dto., Chap. 5.

  3. J.R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).

    Article  ADS  MATH  Google Scholar 

  4. F.J. Dyson, Rev. Mod. Phys. 51, 447 (1979).

    Article  ADS  Google Scholar 

  5. H.D. Zeh, The Physical Basis of the Direction of Time, 5th edn. (Springer, 2007c), Sect. 3.2.

    Google Scholar 

  6. J.D. Bekenstein, Phys. Rev. D7, 2333 (1973); S.W. Hawking, Comm. Math. Phys. 43, 199 (1975).

    MathSciNet  ADS  Google Scholar 

  7. F.C. Adams and G. Laughlin, Rev. Mod. Phys. 69, 337 (1997).

    Article  ADS  Google Scholar 

  8. D.N. Page, Phys. Lett. B95, 244 (1980); see also Ya.B. Zel’dovich, Usp. Fiz. Nauk 123, 487 (1977) [Sov. Phys. Usp. 20, 945 (1977)].

    MathSciNet  ADS  Google Scholar 

  9. S.W. Hawking, Phys. Rev. D14, 2460 (1976); D.N. Page, in R.B. Mann and R.G. McLenaghan (edts.), Proc. 5th Can. Conf. Gen. Rel. and Relat. Astrophys. (World Scientific, Singapore, 1994), and Refs. therein; D. Gottesmann and J. Preskill, JHEP 0403, 026 (2004); S.W. Hawking, Phys. Rev. D72, 084013 (2005); S.D.H. Hsu and D. Reeb, Phys. Rev. D79, 124037 (2009); C. Barceló, S. Liberati, S. Sonego, and M. Visser, arXiv 1011.5911v1.

    MathSciNet  ADS  Google Scholar 

  10. R. Penrose, in C.J. Isham, R. Penrose, and D.W. Sciama (edts.), Quantum Gravity II (Clarendon Press, Oxford, 1981); see also C. Kiefer, arXiv 0910.5836.

    Google Scholar 

  11. S.W. Hawking, Phys. Rev. D13, 191 (1976).

    MathSciNet  ADS  Google Scholar 

  12. C. Kiefer, Class. Quant. Grav. 18, L151 (2001); in H.T. Elze (edt.), Decoherence and Entropy in Complex Systems (Springer, Berlin, 2004); H.D. Zeh, Phys. Lett. A347, 1 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L. Boltzmann, Berliner Berichte 1016 (1897).

    Google Scholar 

  14. A. Einstein and W. Ritz, Phys. Z. 10, 323 (1911).

    Google Scholar 

  15. T. Gold, Am. J. Phys. 30, 403 (1962).

    Article  ADS  MATH  Google Scholar 

  16. H.D. Zeh, Entropy 8, 44 (2006).

    Article  ADS  Google Scholar 

  17. C. Kiefer and H.D. Zeh, Phys. Rev. D51, 4145 (1995).

    MathSciNet  ADS  Google Scholar 

  18. M. Bojowald, Gen. Rel. Grav. 35, 1877 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. H.D. Conradi and H.D. Zeh, Phys. Lett. A151, 321 (1991); A. Ashtekar, M. Campiglia, and A. Henderson, Report arXiv 1011.1024v1.

    ADS  Google Scholar 

  20. R. Arnowitt, S. Deser, and C.W. Misner, in L. Witten (edt.) Gravitation: An Introduction to Current Research (Wiley, New York, 1962).

    Google Scholar 

  21. J. Barbour, in R. Penrose and C.J. Isham (edts.), Quantum Concepts in Space and Time (Cambridge Press, Cambridge, 1986); Class. Quant. Grav. 11, 2853 (1994); The End of Time (Weidenfeld and Nicolson, London, 1999).

    Google Scholar 

  22. See C. Kiefer, Quantum Gravity (Cambridge University Press, Cambridge, 2007), for a review.

    Book  MATH  Google Scholar 

  23. K. Kuchar, in G. Kunstatter, D. Vincent, and J Williams (edts.), Proc. 4th Can. Conf. Gen. Rel. and Rel. Astrophys. (World Scientific, Singapore, 1992); C.J. Isham, in L.A. Ibort, and M.A. Rodriguez (edts.), Integrable Systems, Quantum Groups and Quantum Field Theory (Kluwer, Dordrecht, 1993).

    Google Scholar 

  24. H.D. Zeh, Die Physik der Zeitrichtung, Springer Lecture Notes. (Springer, Berlin, 1984), §6; Phys. Lett. A116, 9 (1986); A126, 311 (1988).

    MATH  Google Scholar 

  25. D.N. Page and W.K. Wootters, Phys. Rev. D27, 2885 (1983).

    ADS  Google Scholar 

  26. D. Giulini and C. Kiefer, Phys. Lett. A193, 21 (1994).

    ADS  Google Scholar 

  27. J.J. Halliwell and S.W. Hawking, Phys. Rev. D31, 1777 (1985); C. Kiefer, Class. Quant. Grav. 4, 1369 (1987).

    MathSciNet  ADS  Google Scholar 

  28. C. Kiefer, Phys. Rev. D38, 1761 (1988).

    MathSciNet  ADS  Google Scholar 

  29. A.O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, and I.V. Mishakov, Nucl. Phys. B551, 374 (1999).

    Google Scholar 

  30. V.G. Lapchinsky and V.A. Rubakov, Acta Phys. Polonica 10, 1041 (1979); T. Banks, Nucl. Phys. B249, 332 (1985); R. Brout and G. Venturi, Phys. Rev. D39, 2436 (1989); see also J.J. Halliwell and S.W. Hawking, Phys. Rev. D31, 1777 (1985); C. Kiefer, Class. Quant. Grav. 4, 1369 (1987).

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgement

I wish to thank Claus Kiefer for his comments on an early draft of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zeh, H.D. (2012). The Nature and Origin of Time-Asymmetric Spacetime Structures. In: Physik ohne Realität: Tiefsinn oder Wahnsinn?. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21890-3_22

Download citation

Publish with us

Policies and ethics