Skip to main content

How to Reconstruct the System’s Dynamics by Differentiating Interval-Valued and Set-Valued Functions

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6743))

  • 1120 Accesses

Abstract

To predict the future state of a physical system, we must know the differential equations \(\dot x=f(x)\) that describe how this state changes with time. In many practical situations, we can observe individual trajectories x(t). By differentiating these trajectories with respect to time, we can determine the values of f(x) for different states x; if we observe many such trajectories, we can reconstruct the function f(x). However, in many other cases, we do not observe individual systems, we observe a set X of such systems. We can observe how this set X changes, but not how individual states change. In such situations, we need to reconstruct the function f(x) based on the observations of such “set trajectories” X(t). In this paper, we show how to extend the standard differentiation techniques of reconstructing f(x) from vector-valued trajectories x(t) to general set-valued trajectories X(t).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assev, S.M.: Quasilinear operators and their application in the theory of multivalued mappings. Proceedings of the Steklov Institute of Mathematics 2, 23–52 (1986)

    Google Scholar 

  2. Aubin, J.P., Franskowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    Google Scholar 

  3. Aubin, J.P., Franskowska, H.: Introduction: Set-valued analysis in control theory. Set-Valued Analysis 8, 1–9 (2000)

    Article  Google Scholar 

  4. Banks, H.T., Jacobs, M.Q.: A differential calculus for multifunctions. Journal of Mathematical Analysis and Applications 29, 246–272 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bede, B.: Note on Numerical solutions of fuzzy differential equations by predictor-corrector method. Information Sciences 178, 1917–1922 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation. Fuzzy Sets and Systems 151, 581–599 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bede, B., Rudas, I.J., Bencsik, A.L.: First order linear fuzzy differential equations under generalized differentiability. Information Sciences 177, 1648–1662 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chalco-Cano, Y., Román-Flores, H.: On the new solution of fuzzy differential equations. Chaos, Solitons & Fractals 38, 112–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chalco-Cano, Y., Román-Flores, H.: Comparation between some approaches to solve fuzzy differential equations. Fuzzy Sets and Systems 160, 1517–1527 (2008)

    Article  MATH  Google Scholar 

  10. De Blasi, F.S.: On the differentiability of multifunctions. Pacific Journal of Mathematics 66, 67–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hukuhara, M.: Integration des applications mesurables dont la valeur est un compact convexe. Funkcialaj Ekvacioj 10, 205–223 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Ibrahim, A.-G.M.: On the differentiability of set-valued functions defined on a Banach space and mean value theorem. Applied Mathematics and Computers 74, 76–94 (1996)

    MathSciNet  Google Scholar 

  13. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  14. Li, D.G., Chen, X.E.: Improvement of definitions of one-element rough function and binary rough function and investigation of their mathematical analysis properties. Journal of Shanxi University 23(4), 318–321 (2000)

    MathSciNet  Google Scholar 

  15. Li, D.G., Hu, G.R.: Definitions of n-element rough function and investigation of its mathematical analysis properties. Journal of Shanxi University 24(4), 299–302 (2001)

    Google Scholar 

  16. Nguyen, H.T., Kreinovich, V.: How to divide a territory? a new simple differential formalism for optimization of set functions. International Journal of Intelligent Systems 14(3), 223–251 (1999)

    Article  MATH  Google Scholar 

  17. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  18. Pawlak, Z.: Rough functions. Bulletin of the Polish Academy of Sciences, Technical Series PAS Tech. Ser. 355(5-6), 249–251 (1997)

    MATH  Google Scholar 

  19. Pawlak, Z.: Rough sets, rough function and rough calculus. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, pp. 99–109. Springer, Berlin (1999)

    Google Scholar 

  20. Pawlak, Z., Pal, S.K., Skowron, A.: Rough-Fuzzy Hybridization: A New Trend in Decision-Making. Springer, New York (1999)

    MATH  Google Scholar 

  21. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis 71, 1311–1328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Y., Guan, Y.Y., Wang, H.: Rough derivatives in rough function model and their application. In: Proc. of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, vol. 3, pp. 193–197 (2007)

    Google Scholar 

  23. Wang, Y., Wang, J.M., Guan, Y.Y.: The theory and application of rough integration in rough function model. In: Proc. of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, vol. 3, pp. 224–228 (2007)

    Google Scholar 

  24. Wang, Y., Xu, X., Yu, Z.: Notes for rough derivatives and rough continuity in rough function model. In: Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery FSKD 2010, Yantai, China, August 10-12, pp. 245–247. IEEE Press, Los Alamitos (2010)

    Chapter  Google Scholar 

  25. Zhuo, Z.Q.: Improvement of definition of rough function and proof of rough derivatives properties in rough set theory. Journal of Huaibei Coal Normal University 23(3), 10–15 (2002)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villaverde, K., Kosheleva, O. (2011). How to Reconstruct the System’s Dynamics by Differentiating Interval-Valued and Set-Valued Functions. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21881-1_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21880-4

  • Online ISBN: 978-3-642-21881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics