Skip to main content

Shell-Models for Multi-Layer Carbon Nano-Particles

  • Chapter
  • First Online:
Shell-like Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 15))

Abstract

In many cases continuum mechanics has proved to be an appropriate method for investigating the mechanical behavior of carbon nanostructures reducing the computational requirements compared to atomistic methods significantly. The main modeling issues arising in continuum mechanics modeling of multi-layer carbon nanostructures are briefly discussed. These issues involve the continuum modeling of (i) the atomic layers, (ii) the covalent interlayer bonds, (iii) the van der Waals interactions, and (iv) the excess surface energy due to curvature. Continuum mechanics methods in conjunction with the finite element method are applied to investigate the compressive behavior of carbon crystallites and a possible growth limit of carbon onions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banhart, F., Ajayan, P.M.: Carbon onions as nanoscopic pressure cells for diamond formation. Nature. 382, 433–435 (1996)

    Article  CAS  Google Scholar 

  2. Blank, V.D., Denisov, V.N., Kirichenko, A.N., Kulnitskiy, B.A., Yu Martushov, S., Mavrin, B.N., Perezhogin, I.A.: High pressure transformation of single-crystal graphite to form molecular carbon onions. Nanotechnology. 18, 345601–14 (2007)

    Article  Google Scholar 

  3. Binder, K.: Applications of Monte Carlo methods in statistical physics. Rep Prog Phys. 60, 487–559 (1997)

    Article  CAS  Google Scholar 

  4. Dobb, M.G., Guo, H., Johnson, D.J., Park, C.R.: Structure-compressional property relations in carbon fibres. Carbon 33, 1553–1559 (1995)

    Article  CAS  Google Scholar 

  5. Drmota, A., Scheidl, R., Troger, H.: On the imperfection sensitivity of complete shells. Comput Mech. 2, 63–74 (1987)

    Article  Google Scholar 

  6. Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog Mater Sci 53, 481–527 (2008)

    Article  CAS  Google Scholar 

  7. Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical conditions. Comput Chem 25, 1463–1473 (2004)

    Article  CAS  Google Scholar 

  8. Hawthrone, H.M.: On non-Hookean behavior of carbon fibers in bending. J Mater Sci 28, 2531–2535 (1998)

    Article  Google Scholar 

  9. Holec, D., Hartmann, M.A., Fischer, F.D., Rammerstorfer, F.G., Mayrhofer, P.H., Paris, O.: Curvature-induced excess surface energy of fullerenes: Density functional theory and Monte Carlo simulations. Phys Rev B 81, 235403–110 (2010)

    Article  Google Scholar 

  10. Kelly, B.T.: The physics of graphite, pp. 70–80. Applied Science Publishers, London (1981)

    Google Scholar 

  11. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  CAS  Google Scholar 

  12. Li, C., Chou, T.: A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40, 2487–2499 (2003)

    Article  Google Scholar 

  13. Liew, K.M., Sun, Y.Z.: Computational Modelling and Simulation of Carbon Nanotubes. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Romeo , M.L. (eds.) Developments and Applications in Engineering Computational Technology, Saxe-Coburg Publications, Stirlingshire, Scotland (2010)

    Google Scholar 

  14. Liu, W.K., Karpov, E.G., Zhang, S., Park, H.S.: An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Engrg 193, 1529–1578 (2004)

    Article  Google Scholar 

  15. Loidl, D., Peterlik, H., Müller, M., Riekel, C., Paris, O.: Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction. Carbon 41, 563–570 (2003)

    Article  CAS  Google Scholar 

  16. Loidl, D., Paris, O., Burghammer, M., Riekel, C., Peterlik, H.: Direct Observation of nanocrystalline buckling in carbon fibers under bending load. Phys Rev Lett 95, 25501–14 (2005)

    Article  Google Scholar 

  17. Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J Phy D 42, 102002–16 (2009)

    Article  Google Scholar 

  18. Lu, W.B., Wu, J., Xiao, J., Hwang, K.C., Fu, S.Y., Huang, Y.: Continuum modeling of van der Waals interactions between carbon nanotubes. Appl Phys Lett 94, 101917–13 (2009)

    Article  Google Scholar 

  19. Kuzumaki, T., Hayashi, H., Ichinose, T., Miyazama, K., Ito, K., Ishida, Y.: In-situ observed deformation of carbon nanotubes. Phil Mag A 77, 1461–1469 (1998)

    Article  CAS  Google Scholar 

  20. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  CAS  Google Scholar 

  21. Oya, N., Johnson, D.J.: Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres. Carbon 39, 635–645 (2001)

    Article  CAS  Google Scholar 

  22. Paris, O., Peterlik, H.: The structure of carbon fibres. In: Eichhorn, S., Hearle, J.W.S., Jaffe, M., Kikutani , T. (eds.) Handbook of textile fibre structure Vol 2, Woodhead Publishing Ltd, Abington (2009)

    Google Scholar 

  23. Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52, 789–821 (2004)

    Article  CAS  Google Scholar 

  24. Pflüger, A.: Stabilitätsprobleme der Elastostatik, pp. 514. Springer-Verlag, Berlin/Heidelberg (1975)

    Google Scholar 

  25. Raffii-Tabar, H.: Computational physics of carbon nanotubes. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  26. Qi, H.J., Teo, K.B.K., Lau, K.K.S., Boyce, M.J., Milne, W.I., Robertson, J., Gleason, K.K.: Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51, 2213–2237 (2003)

    Article  CAS  Google Scholar 

  27. Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys 87, 7227–7231 (2000)

    Article  CAS  Google Scholar 

  28. Sancho-García, J.C., Pérez-Jiménez, A.J., Pérez-Jordá, J.M., Moscardó, F.: High level ab initio calculations of the torsional potential of glyoxal. Chem Phys Lett 342, 452–460 (2001)

    Article  Google Scholar 

  29. Sears, A., Batra, R.C.: Macro-mechanics properties of carbon nanotubes: Molecular mechanics simulations. Phys Rev B 69, 235406–110 (2004)

    Article  Google Scholar 

  30. Tang, A.C., Huang, F.Q.: Stability rules of icosahedral (Ih or I) fullerenes. Chem Phys Lett 247, 494–501 (1995)

    Article  CAS  Google Scholar 

  31. Telling, R.H., Ewels, C.P., El-Barbary, A.A., Heggie, M.I.: Wigner defects bridge the graphite gap. Nat Mater 2, 333–337 (2003)

    Article  CAS  Google Scholar 

  32. Todt, M., Rammerstofer, F.G., Paris, O., Fischer, F.D.: Nanomechanical studies of the compressive behavior of carbon fibers. J Mater Sci. 45, 6845–6848 (2010)

    Article  CAS  Google Scholar 

  33. Todt, M., Rammerstofer, F.G., Fischer, F.D., Mayrhofer, P.H., Holec, D., Hartmann, M.A.: Continuum modeling of van der Waals interactions between carbon onion layers. Carbon 49, 1620–1627 (2011)

    Article  CAS  Google Scholar 

  34. Tomita, S., Burian, A., Dore, J.C., LeBolloch, D., FujiiM. Hayashi, S.: Diamond nanoparticles to carbon onions transformation: X-ray diffraction studies. Carbon 40, 1469–1474 (2002)

    Article  CAS  Google Scholar 

  35. Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)

    Article  CAS  Google Scholar 

  36. Van Lier, G., Van Alsenoy, C., Van Doren, V., Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phy Lett 326, 181–185 (2000)

    Article  CAS  Google Scholar 

  37. Vollath, D.: Nanomaterials. Wiley, Weinheim (2008)

    Google Scholar 

  38. Voytekhovsky, Y.L.: A formula to estimate the size of a fullerene. Acta Crystallogr A 59, 193–194 (2003)

    Article  Google Scholar 

  39. Walther, J.H., Jaffe, R., Halicioglu, T., Koumoutsakos, P.: Carbon nanotubes in water: Structural characteristics and energetics. J Phys Chem B 105, 9980–9887 (2001)

    Article  CAS  Google Scholar 

  40. Wu, J., Peng, J., Hwang, K.C., Song, J., Huang, Y.: The intrinsic stiffness of single-wall carbon nanotubes. Mech Res Commun 35, 2–9 (2008)

    Article  Google Scholar 

  41. Yakobson , I.B., Brabec, C.J, Bernholc, J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys Rev Lett 76, 2511–2514 (1996)

    Article  CAS  Google Scholar 

  42. Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39, 3893–3906 (2002)

    Article  Google Scholar 

  43. Zhao, Y.X., Spain, I.L.: X-ray diffraction data for graphite to 20 GPa. Phys Rev B 40, 993–997 (1989)

    Article  CAS  Google Scholar 

  44. Zhou, X., Zhou, J.J., Ou-Yang, Z.C.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B. 62, 13692–13696 (2000)

    Article  Google Scholar 

  45. Zwanger, M.S., Banhart, F., Seeger, A.: Formation and decay of spherical concentric-shell carbon clusters. J Cryst Growth 163, 445–454 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Todt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Todt, M., Rammerstorfer, F.G., Hartmann, M.A., Paris, O., Fischer, F.D. (2011). Shell-Models for Multi-Layer Carbon Nano-Particles. In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. Advanced Structured Materials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21855-2_39

Download citation

Publish with us

Policies and ethics