Advertisement

Shell-Models for Multi-Layer Carbon Nano-Particles

  • Melanie TodtEmail author
  • Franz G. Rammerstorfer
  • Markus A. Hartmann
  • Oskar Paris
  • Franz D. Fischer
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 15)

Abstract

In many cases continuum mechanics has proved to be an appropriate method for investigating the mechanical behavior of carbon nanostructures reducing the computational requirements compared to atomistic methods significantly. The main modeling issues arising in continuum mechanics modeling of multi-layer carbon nanostructures are briefly discussed. These issues involve the continuum modeling of (i) the atomic layers, (ii) the covalent interlayer bonds, (iii) the van der Waals interactions, and (iv) the excess surface energy due to curvature. Continuum mechanics methods in conjunction with the finite element method are applied to investigate the compressive behavior of carbon crystallites and a possible growth limit of carbon onions.

Keywords

Nanomechanics Layered structures Stability Computational modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banhart, F., Ajayan, P.M.: Carbon onions as nanoscopic pressure cells for diamond formation. Nature. 382, 433–435 (1996)CrossRefGoogle Scholar
  2. 2.
    Blank, V.D., Denisov, V.N., Kirichenko, A.N., Kulnitskiy, B.A., Yu Martushov, S., Mavrin, B.N., Perezhogin, I.A.: High pressure transformation of single-crystal graphite to form molecular carbon onions. Nanotechnology. 18, 345601–14 (2007)CrossRefGoogle Scholar
  3. 3.
    Binder, K.: Applications of Monte Carlo methods in statistical physics. Rep Prog Phys. 60, 487–559 (1997)CrossRefGoogle Scholar
  4. 4.
    Dobb, M.G., Guo, H., Johnson, D.J., Park, C.R.: Structure-compressional property relations in carbon fibres. Carbon 33, 1553–1559 (1995)CrossRefGoogle Scholar
  5. 5.
    Drmota, A., Scheidl, R., Troger, H.: On the imperfection sensitivity of complete shells. Comput Mech. 2, 63–74 (1987)CrossRefGoogle Scholar
  6. 6.
    Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog Mater Sci 53, 481–527 (2008)CrossRefGoogle Scholar
  7. 7.
    Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical conditions. Comput Chem 25, 1463–1473 (2004)CrossRefGoogle Scholar
  8. 8.
    Hawthrone, H.M.: On non-Hookean behavior of carbon fibers in bending. J Mater Sci 28, 2531–2535 (1998)CrossRefGoogle Scholar
  9. 9.
    Holec, D., Hartmann, M.A., Fischer, F.D., Rammerstorfer, F.G., Mayrhofer, P.H., Paris, O.: Curvature-induced excess surface energy of fullerenes: Density functional theory and Monte Carlo simulations. Phys Rev B 81, 235403–110 (2010)CrossRefGoogle Scholar
  10. 10.
    Kelly, B.T.: The physics of graphite, pp. 70–80. Applied Science Publishers, London (1981)Google Scholar
  11. 11.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  12. 12.
    Li, C., Chou, T.: A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40, 2487–2499 (2003)CrossRefGoogle Scholar
  13. 13.
    Liew, K.M., Sun, Y.Z.: Computational Modelling and Simulation of Carbon Nanotubes. In: Topping, B.H.V., Adam, J.M., Pallarés, F.J., Bru, R., Romeo , M.L. (eds.) Developments and Applications in Engineering Computational Technology, Saxe-Coburg Publications, Stirlingshire, Scotland (2010)Google Scholar
  14. 14.
    Liu, W.K., Karpov, E.G., Zhang, S., Park, H.S.: An introduction to computational nanomechanics and materials. Comput Methods Appl Mech Engrg 193, 1529–1578 (2004)CrossRefGoogle Scholar
  15. 15.
    Loidl, D., Peterlik, H., Müller, M., Riekel, C., Paris, O.: Elastic moduli of nanocrystallites in carbon fibers measured by in-situ X-ray microbeam diffraction. Carbon 41, 563–570 (2003)CrossRefGoogle Scholar
  16. 16.
    Loidl, D., Paris, O., Burghammer, M., Riekel, C., Peterlik, H.: Direct Observation of nanocrystalline buckling in carbon fibers under bending load. Phys Rev Lett 95, 25501–14 (2005)CrossRefGoogle Scholar
  17. 17.
    Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J Phy D 42, 102002–16 (2009)CrossRefGoogle Scholar
  18. 18.
    Lu, W.B., Wu, J., Xiao, J., Hwang, K.C., Fu, S.Y., Huang, Y.: Continuum modeling of van der Waals interactions between carbon nanotubes. Appl Phys Lett 94, 101917–13 (2009)CrossRefGoogle Scholar
  19. 19.
    Kuzumaki, T., Hayashi, H., Ichinose, T., Miyazama, K., Ito, K., Ishida, Y.: In-situ observed deformation of carbon nanotubes. Phil Mag A 77, 1461–1469 (1998)CrossRefGoogle Scholar
  20. 20.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007)CrossRefGoogle Scholar
  21. 21.
    Oya, N., Johnson, D.J.: Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres. Carbon 39, 635–645 (2001)CrossRefGoogle Scholar
  22. 22.
    Paris, O., Peterlik, H.: The structure of carbon fibres. In: Eichhorn, S., Hearle, J.W.S., Jaffe, M., Kikutani , T. (eds.) Handbook of textile fibre structure Vol 2, Woodhead Publishing Ltd, Abington (2009)Google Scholar
  23. 23.
    Pantano, A., Parks, D.M., Boyce, M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52, 789–821 (2004)CrossRefGoogle Scholar
  24. 24.
    Pflüger, A.: Stabilitätsprobleme der Elastostatik, pp. 514. Springer-Verlag, Berlin/Heidelberg (1975)Google Scholar
  25. 25.
    Raffii-Tabar, H.: Computational physics of carbon nanotubes. Cambridge University Press, Cambridge (2008)Google Scholar
  26. 26.
    Qi, H.J., Teo, K.B.K., Lau, K.K.S., Boyce, M.J., Milne, W.I., Robertson, J., Gleason, K.K.: Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51, 2213–2237 (2003)CrossRefGoogle Scholar
  27. 27.
    Ru, C.Q.: Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys 87, 7227–7231 (2000)CrossRefGoogle Scholar
  28. 28.
    Sancho-García, J.C., Pérez-Jiménez, A.J., Pérez-Jordá, J.M., Moscardó, F.: High level ab initio calculations of the torsional potential of glyoxal. Chem Phys Lett 342, 452–460 (2001)CrossRefGoogle Scholar
  29. 29.
    Sears, A., Batra, R.C.: Macro-mechanics properties of carbon nanotubes: Molecular mechanics simulations. Phys Rev B 69, 235406–110 (2004)CrossRefGoogle Scholar
  30. 30.
    Tang, A.C., Huang, F.Q.: Stability rules of icosahedral (Ih or I) fullerenes. Chem Phys Lett 247, 494–501 (1995)CrossRefGoogle Scholar
  31. 31.
    Telling, R.H., Ewels, C.P., El-Barbary, A.A., Heggie, M.I.: Wigner defects bridge the graphite gap. Nat Mater 2, 333–337 (2003)CrossRefGoogle Scholar
  32. 32.
    Todt, M., Rammerstofer, F.G., Paris, O., Fischer, F.D.: Nanomechanical studies of the compressive behavior of carbon fibers. J Mater Sci. 45, 6845–6848 (2010)CrossRefGoogle Scholar
  33. 33.
    Todt, M., Rammerstofer, F.G., Fischer, F.D., Mayrhofer, P.H., Holec, D., Hartmann, M.A.: Continuum modeling of van der Waals interactions between carbon onion layers. Carbon 49, 1620–1627 (2011)CrossRefGoogle Scholar
  34. 34.
    Tomita, S., Burian, A., Dore, J.C., LeBolloch, D., FujiiM. Hayashi, S.: Diamond nanoparticles to carbon onions transformation: X-ray diffraction studies. Carbon 40, 1469–1474 (2002)CrossRefGoogle Scholar
  35. 35.
    Ugarte, D.: Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)CrossRefGoogle Scholar
  36. 36.
    Van Lier, G., Van Alsenoy, C., Van Doren, V., Geerlings, P.: Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem Phy Lett 326, 181–185 (2000)CrossRefGoogle Scholar
  37. 37.
    Vollath, D.: Nanomaterials. Wiley, Weinheim (2008)Google Scholar
  38. 38.
    Voytekhovsky, Y.L.: A formula to estimate the size of a fullerene. Acta Crystallogr A 59, 193–194 (2003)CrossRefGoogle Scholar
  39. 39.
    Walther, J.H., Jaffe, R., Halicioglu, T., Koumoutsakos, P.: Carbon nanotubes in water: Structural characteristics and energetics. J Phys Chem B 105, 9980–9887 (2001)CrossRefGoogle Scholar
  40. 40.
    Wu, J., Peng, J., Hwang, K.C., Song, J., Huang, Y.: The intrinsic stiffness of single-wall carbon nanotubes. Mech Res Commun 35, 2–9 (2008)CrossRefGoogle Scholar
  41. 41.
    Yakobson , I.B., Brabec, C.J, Bernholc, J.: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys Rev Lett 76, 2511–2514 (1996)CrossRefGoogle Scholar
  42. 42.
    Zhang, P., Huang, Y., Geubelle, P.H., Klein, P.A., Hwang, K.C.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39, 3893–3906 (2002)CrossRefGoogle Scholar
  43. 43.
    Zhao, Y.X., Spain, I.L.: X-ray diffraction data for graphite to 20 GPa. Phys Rev B 40, 993–997 (1989)CrossRefGoogle Scholar
  44. 44.
    Zhou, X., Zhou, J.J., Ou-Yang, Z.C.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B. 62, 13692–13696 (2000)CrossRefGoogle Scholar
  45. 45.
    Zwanger, M.S., Banhart, F., Seeger, A.: Formation and decay of spherical concentric-shell carbon clusters. J Cryst Growth 163, 445–454 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Melanie Todt
    • 1
    Email author
  • Franz G. Rammerstorfer
    • 1
  • Markus A. Hartmann
    • 2
  • Oskar Paris
    • 2
  • Franz D. Fischer
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Montanuniversitat LeobenLeobenAustria

Personalised recommendations