Advertisement

What Shell Theory fits Carbon Nanotubes

  • Antonino FavataEmail author
  • Paolo Podio–Guidugli
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 15)

Abstract

We discuss what linearly elastic shell model would bestcapture the peculiarities of the mechanical response of carbonnanotubes, be they single- or multi-wall. We argue that, at themacroscopic scale, carbon nanotubes should be modeled asorthotropic cylindrical shells. An abridged presentation ofthe basic ingredients of such a shell theory is given.

Keywords

Shell theory Carbon nanotube Orthotropic shell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bajaj, A. Favata, P. Podio-Guidugli,On a Scale-Bridging Mechanical Model of Single-Wall Carbon Nanotubes, (2011) ForthcomingGoogle Scholar
  2. 2.
    G.X. Cao, X. Chen, The effects of chirality and boundaryconditions on the mechanical properties of single-walled carbonnanotubes, Intern. Journ. Sol. Struc., 44, 5447–5465 (2007)CrossRefGoogle Scholar
  3. 3.
    T.C. Chang, : Torsional behavior of chiral singlewalled carbonnanotubes is loading direction dependent, Appl. Phys. Lett., 90, 201910 (2007)Google Scholar
  4. 4.
    A. Di Carlo, A. Favata, P. Podio–Guidugli, : Modeling Multi-Wall Carbon Nanotubes as Elastic Multi-Shells, (2011) (Forthcoming)Google Scholar
  5. 5.
    A. Favata, P. Podio-Guidugli, : A new CNT-Oriented shell theory, submitted (2011)Google Scholar
  6. 6.
    R.V. Goldstein, V.A. Gorodtsov, A.V. Chentsov, S.V. Starikov, V.V. Stegailov, G.E Norman, : To description of mechanical properties of nanotubes. Tube wall thickness problem. Size effect, Russian Academy of Sciences, A.Yu. Ishlinsky Institute for Problems in Mechanics, Preprint 937 (2010)Google Scholar
  7. 7.
    M.E. Gurtin, : The Linear Theory of Elasticity Pp. 1-295 of Handbuch der PhysikVIa/2. Springer,   (1972)Google Scholar
  8. 8.
    C. Li, T.-W Chou, : A structural mechanics approach forthe analysis of carbon nanotubes, Int. J. Solids Struct., 40, 2487 (2003)CrossRefGoogle Scholar
  9. 9.
    G.M. Odegard, : Modeling of Carbon Nanotube/PolymerComposites. In: M.J. Schulz, A. Kelkar, M.J. Sundaresan, (eds.) Nanoengineering of Structural, Functional and Smart Materials,, CRC Press   (2005)Google Scholar
  10. 10.
    G.M. Odegard, : Equivalent-Continuum Modeling ofNanostructured Materials. In: M. Rieth, W. Schommers, (eds.) Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers,   (2006)Google Scholar
  11. 11.
    P. Podio–Guidugli, M. Vianello, : The representation problemof constrained linear elasticity. J. Elasticity, 28, 271–276 (1992)CrossRefGoogle Scholar
  12. 12.
    C.Q Ru, : Chirality-Dependent Mechanical Behavior of CarbonNanotubes Based on an Anisotropic Elastic Shell Model, Math. Mech.Sol., 14, 88–101 (2009)CrossRefGoogle Scholar
  13. 13.
    Shen, L., Li, J.: Transversely isotropic properties ofsingle-walled carbon nanotube, Phys. Rev. B 69, 045414 (2004)CrossRefGoogle Scholar
  14. 14.
    H. Wan, F. Delale, : A structural mechanics approach forpredicting the mechanical properties of carbon nanotubes. Meccanica 45, 4351 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Zhang, V.B. Tan, C.M. Wang, : Effect of chirality on bucklingbehavior of singlewalled carbon nanotubes, Jour. Appl. Phys., 100, 074304 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria CivileUniversità di Roma Tor VergataRomaItaly

Personalised recommendations