Skip to main content

Gauss-Codazzi Equations for Thin Films and Nanotubes Containing Defects

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 15))

Abstract

In the present work we develop the theory of linear defects (dislocations and disclinations) in thin films and nanotubes. Particular attention is given to the geometrical side of the theory, namely, to the Gauss-Codazzi equations of strain compatibility (incompatibility) that determine in general the presence in the body of residual or eigen-strains. We obtain equivalent coordinate-free and covariant formulations of these equations. In addition some special cases of anholonomic isometric transformations of a plane into a surface with defects representing quasi-plastic or incoherent bending are considered. An elegant analogy is drawn with the equations describing steady motions of an ideal incompressible fluid with prescribed vorticity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolesnikova, A.L., Romanov, A.E.: A disclination-based approach to describing the structure of fullerenes. Physics of the Solid State 40(6), 1075–1077 (1998)

    Article  Google Scholar 

  2. Romanov, A.E., Sheinerman, A.G.: Energy of deformed and defective carbon clusters. Physics of the Solid State 42(8), 1569–1574 (2000)

    Article  CAS  Google Scholar 

  3. Vozmediano, M.A.H., Katsnelson, M.I., Guinea, F.: Gauge fields in graphene. Physics Reports 496, 109–148 (2010)

    Article  CAS  Google Scholar 

  4. Oswald, J., Gracie, R., Khare, R., Belytschko, T.: An extended finite element method for dislocations in complex geometries: Thin films and nanotubes. Comput. Methods Appl. Mech. Engrg. 198, 1872–1886 (2009)

    Article  Google Scholar 

  5. Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Chernykh, K.F.: Relation between dislocations and concentrared loadings in the theory of shells. PMM U.S.S.R. 49(6), 359–371 (1959)

    Google Scholar 

  7. Povstenko, Yu.Z.: Continuous theory of dislocations and disclinations in a two-dimensional medium. PMM U.S.S.R. 49(6), 782–786 (1985)

    Google Scholar 

  8. Derezin, S.V., Zubov, L.M.: Equations of a nonlinear elastic medium with continuously distributed dislocations and disclinations. Dokl. Phys. 44(6), 391–394 (1999)

    Google Scholar 

  9. Zubov, L.M.: Methods of Nonlinear Elasticity in Shell Theory (in Russian). Izd-vo Rost. Un-ta, Rostov on Don (1982)

    Google Scholar 

  10. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    Google Scholar 

  11. Zubov, L.M.: A new form of compatibility conditions in the nonlinear theory of elastic shells (in Russian). Izv. Vyssh. Uchebn. Zaved., Sev.-Kav. Region., Est. nauki. N 3, 64–65 (2000)

    Google Scholar 

  12. Eremeyev, V.A., Zubov, L.M.: Mechanics of Elastic Shells (in Russian). Nauka, Moscow (2008)

    Google Scholar 

  13. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    Google Scholar 

  14. Podio-Guidugli, P.: A primer in elasticity. Journal of Elasticity 58, 1–104 (2000)

    Article  Google Scholar 

  15. Shield, R.T.: The rotation associated with large strains. SIAM J. Appl. Math. 25(3), 483–491 (1973)

    Article  Google Scholar 

  16. Vallée, C.: Compatibility equations for large deformations. Int. J. Engng Sci. 30(12), 1753–1757 (1992)

    Article  Google Scholar 

  17. Vallée, C., Fortuné, D.: Compatibility equations in shell theory. Int. J. Engng Sci. 34(5), 495–499 (1996)

    Article  Google Scholar 

  18. Léonard-Fortuné, D.: Conditions de compatibilité en mécanique des solides - Méthode de Darboux. Thése, L’Université de Poitiers (2008)

    Google Scholar 

  19. Darboux, G.: Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal. In 4 vol., Paris, Gauthier-Villars (1887-1896)

    Google Scholar 

  20. Cleja-Tigoiu, S., Fortuné, D., Vallée, C.: Torsion equation in anisotropic elasto-plastic materials with continuously distributed dislocations. Math. Mech. Sol. 13, 667–689 (2008)

    Article  Google Scholar 

  21. Signorini, A.: Trasformazioni termoelastiche finite. Ann. Mat. Pura Appl. 22, 33–143 (1943)

    Article  Google Scholar 

  22. Szwabowicz, M.L., Szwabowicz, M.L., Szwabowicz, M.L.: Determination of the deformed position of a thin shell from surface strains and height function. Int. J. Non-Lin. Mech. 39, 1251–1263 (2004)

    Article  Google Scholar 

  23. Pietraszkiewicz, W., Pietraszkiewicz, W., Pietraszkiewicz, W.: A method of shell theory in determination of the surface from components of its two fundamental forms. Z. Angew. Math. Mech. 87, 603–615 (2007)

    Article  Google Scholar 

  24. Pietraszkiewicz, W., Szwabowicz, M.L., Vallée, C.: Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition. Int. J. Non-Lin. Mech. 43, 579–587 (2008)

    Article  Google Scholar 

  25. Narasimhan, R.: Analysis on Real and Complex Manifolds. North-Holland, Amsterdam (1968)

    Google Scholar 

  26. Schlesinger, L.: Parallelverschiebung und Krümmungstensor. Math. Ann. 99, 413–434 (1928)

    Article  Google Scholar 

  27. Norden, A.P.: Affinely Connected Spaces (in Russian). Nauka, Moscow (1976)

    Google Scholar 

  28. Wit, R.: A view of the relation between the continuum theory of lattice defects and non-Euclidean geometry in the linear approximation. Int. J. Engng Sci. 19(12), 1475–1506 (1981)

    Article  Google Scholar 

  29. Srolovitz, D.J., Safran, S.A., Tenne, R.: Elastic equilibriun of curved thin films. Phys. Rev. E 49(6), 5260–5270 (1994)

    Article  CAS  Google Scholar 

  30. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  31. Yamasaki, K., Yajima, T., Iwayama, T.: Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures. J. Phys. A: Math. Theor. 44, 155501 (2011)

    Article  Google Scholar 

  32. Savel’ev, M.V.: Classification of exactly integrable embeddings of two-dimensional manifolds. The coefficients of the third fundamental forms. Theor. Math. Phys. 60(1), 638–647 (1984)

    Google Scholar 

  33. Gabeskiriya, M.A.: Lax type representation for embeddings of manifolds in non-Riemannian enveloping spaces. Theor. Math. Phys. 65(2), 1088–1091 (1985)

    Article  Google Scholar 

  34. Kleinert, H.: Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation. World Scientific, Singapore (2008)

    Google Scholar 

  35. Eisenhart, L.P.: Non-Riemannian Geometry. AMS, New York (1927)

    Google Scholar 

  36. Katanaev, M.O.: Polynomial Hamiltonian form of general relativity. Theor. Math. Phys. 148(3), 1264–1294 (2006)

    Article  Google Scholar 

  37. Barbashov, B.M., Nesterenko, V.V.: Introduction to Relativistic String Theory. World Scientific, Singapore (1990)

    Google Scholar 

  38. Green, M.B., Schwarz, J.H., Schwarz, J.H., Schwarz, J.H.: Superstring Theory. In 2 vol. Cambridge Uiversity Press, Cambridge (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svyatoslav Derezin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Derezin, S. (2011). Gauss-Codazzi Equations for Thin Films and Nanotubes Containing Defects. In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. Advanced Structured Materials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21855-2_35

Download citation

Publish with us

Policies and ethics