Skip to main content

Thermal Stress and Strain of Solar Cells in Photovoltaic Modules

  • Chapter
  • First Online:
Shell-like Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 15))

Abstract

The long-term stability of photovoltaic (PV) modules is largely influenced by the module’s ability to withstand thermal cycling between −40°C and 85°C. Due to different coefficients of thermal expansion (CTE) of the different module materials the change in temperature creates stresses. We quantify these thermomechanical stresses by performing a Finite-Element-analysis of a 60 cell module during thermal cycling. We therefore start by the experimental characterization of each material layer. In particular, the polymeric encapsulant is characterized by three alternative models in order to stepwise consider the time- and temperature-dependence in the simulation. Experiments performed with laminated samples are used to validate the computational model. We find that taking into account the viscoelasticity of the encapsulation layers gives the best agreement with experiments. The Finite-Element-analysis of the complete module shows that the solar cells are under high compressive stress of up to 76 MPa as they are sandwiched between the stiff front glass and the strongly contracting plastic back sheet. The non-symmetrical structure of the 5.55 mm thick module with glass being the thickest component (4 mm) leads to bending during the thermal cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iec 61215:2005, crystalline silicon terrestrial photovoltaic (pv) modules - design qualification and type approval. international electrochemical commission, 2005.

    Google Scholar 

  2. Althaus, J.: Quality assurance for pv modules: experience from type approval testing.. Photovoltaics International 3, 120–127 (2009)

    Google Scholar 

  3. Brueckner, R.: Materials Science and Technology: A Comprehensive Treatment, Vol. 9, Glasses and Amorphous Materials, chap. Mechanical properties of Glasses Wiley-VCH,   (1991)

    Google Scholar 

  4. Ehrenstein, G.: Polymer-Werkstoffe. Struktur - Eigenschaften - Anwendung Hanser Fachbuch,   (1999)

    Google Scholar 

  5. Eitner U., Altermatt P.P., Köntges M., Meyer R., Brendel, R.: A modeling approach to the optimization of interconnects for back contact cells by thermomechanical simulations of photovoltaic modules. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, pp. 2815–2817. Valencia (2008)

    Google Scholar 

  6. Eitner U., Kajari-Schröder S., Köntges M., Brendel R (2010) Non-linear mechanical properties of ethylene-vinyl acetate (eva) and its relevance to thermomechanics of photovoltaic modules. In: Proceedings of the 25th European Photovoltaic Solar Energy Conference, pp. 4366–4368. Valencia

    Google Scholar 

  7. Eitner U., Köntges M., Brendel, R.: Measuring thermomechanical displacements of solar cells in laminates using digital image correlation. In: Proceedings of the 34th IEEE PVSC, pp. 1280–1284. Philadelphia (2009)

    Google Scholar 

  8. Eitner, U., Köntges, M., Brendel, R.: Use of digital image correlation technique to determine thermomechanical deformations in photovoltaic laminates: Measurements and accuracy. Solar Energy Materials and Solar Cells 94(8), 1346–1351 (2010)

    Article  CAS  Google Scholar 

  9. Ferry, J.D: Properties of Polymers. Wiley,   (1980)

    Google Scholar 

  10. Greenwood, J.C.: Silicon in mechanical sensors. Journal of Physics E: Scientific Instruments 21(12), 1114–1128 (1988)

    Article  CAS  Google Scholar 

  11. Häberlin, H.: Photovoltaik: Strom aus Sonnenlicht für Verbundnetz und Inselanlagen. Electrosuisse,   (2010)

    Google Scholar 

  12. de Jong, P.: Achievements and challenges in crystalline silicon back-contact module technology. Photovoltaics International 7, 138–144 (2010)

    Google Scholar 

  13. Kempe, M.: Design criteria for photovoltaic back-sheet and front-sheet materials. Photovoltaics International 2, 100–104 (2008)

    Google Scholar 

  14. Kempe, M.: Evaluation of encapsulant materials for pv applications. Photovoltaics International 9, 170–176 (2010)

    Google Scholar 

  15. Lyon, K.G., Salinger, G.L., Swenson, C.A., White, G.K.: Linear thermal expansion measurements on silicon from 6 to 340 k. Journal of Applied Physics 48(3), 865–868 (1977)

    Article  CAS  Google Scholar 

  16. Meier R., Kraemer F., Schindler S., Bagdahn S.W.J. (2010) Thermal and mechanical induced loading on cell interconnectors in crystalline photovoltaic modules. In: Proceedings of the 25th European Photovoltaic Solar Energy Conference, pp. 3740–3744. Valencia

    Google Scholar 

  17. Osterwald, C.R., McMahon, T.J.: History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. Progress in Photovoltaics: Research and Applications 17, 11–33 (2009)

    Article  Google Scholar 

  18. Roberts, R.B.: Thermal expansion reference data: silicon 300-850 k. Journal of Physics D: Applied Physics 14(10), L163–L166 (1981)

    Article  CAS  Google Scholar 

  19. Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer,   (1989)

    Google Scholar 

  20. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society 77, 3701–3707 (1955)

    Article  CAS  Google Scholar 

  21. Wohlgemuth J., Petersen R. (1993) Reliability of eva modules. In: Proceedings of the 23rd IEEE PVSC, pp. 1090–1094

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. R.~Brendel for his guidance on the experimental parts and for his support of this work. Parts of this work were funded by the state of Lower-Saxony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Eitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eitner, U., Kajari-Schröder, S., Köntges, M., Altenbach, H. (2011). Thermal Stress and Strain of Solar Cells in Photovoltaic Modules. In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. Advanced Structured Materials, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21855-2_29

Download citation

Publish with us

Policies and ethics