Advertisement

On Elasto-plastic Analysis of Thin Shells with Deformable Junctions

  • Jacek ChróścielewskiEmail author
  • Violetta Konopińska
  • Wojciech Pietraszkiewicz
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 15)

Abstract

The non-linear equilibrium conditions for irregular thin shells are formulated from the appropriate form of the principle of virtual displacements. 2D constitutive relations of elasto-plastic behaviour of thin shells are established by dividing the shell into n layers and then integrating the corresponding 3D constitutive relations throughout all layers at each step of non-linear incremental solution by FEM. As example, deformation and stress states in the casing of pressure measuring devise are calculated taking into account deformability of the junctions.

Keywords

Thin shell Plasticity Deformable junction. Finite element method. Casing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research was supported by the Polish Ministry of Science and Education under grant No N 506 254237.

References

  1. 1.
    Chróścielewski, J., Konopińska, V., Pietraszkiewicz, W.: On modelling and non-linear elasto-plastic analysis of thin shells with deformable junctions. ZAMM 91, 6, (2011) (in print)Google Scholar
  2. 2 .
    Makowski, J., Pietraszkiewicz, W., Stumpf, H.: On the general form of jump conditions for thin irregular shells. Arch. Mech. 50(2), 483–495 (1998)Google Scholar
  3. 3.
    Makowski, J., Pietraszkiewicz, W., Stumpf, H.: Jump conditions in the non-linear theory of thin irregular shells. J. Elasticity 54(1), 1–26 (1999)CrossRefGoogle Scholar
  4. 4.
    Pietraszkiewicz, W.: Explicit Lagrangian incremental and buckling equations for the non-linear theory of thin shells. Int. J. Non-Linear Mech. 28(2), 209–220 (1993)CrossRefGoogle Scholar
  5. 5.
    Krasnosel’skii, M.A., Vainikko, G.M., Zabrejko, P.P., Rutitskii, Ya.B., Rutitskii, Ya.B., Rutitskii, Ya.B.: Approximate Solutions of Operator Equations. Wolters-Nordhoff Publ., Groningen (1972)Google Scholar
  6. 6.
    Nolte, L.-P., Chroscielewski, J (1986) Large rotation elastic-plastic analysis of flexible shells. In: Taylor, C. et al. (eds.), Numerical Methods for Non-Linear Problems, 3:391–404 Pineridge Press, SwanseaGoogle Scholar
  7. 7.
    Chróścielewski, J., Branicki, Cz.: MINIMOD - Pakiet podprogramów wspomagaj cy badanie zagadnień nieliniowych. W: Mater. IX Konf. ,,Metody Komputerowe w Mechanice”, tom 1, str. 131-138. Kraków-Rytro (1989)Google Scholar
  8. 8.
    Pietraszkiewicz, W., Szwabowicz, M.L.: Entirely Lagrangian nonlinear theory of thin shells. Arch. Mech. 33, 273–288 (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jacek Chróścielewski
    • 1
    Email author
  • Violetta Konopińska
    • 1
  • Wojciech Pietraszkiewicz
    • 2
  1. 1.Department of Structural Mechanics and Bridge StrcturesGdańsk University of TechnologyGdańskPoland
  2. 2.Institute of Fluid-Flow Machinery of the Polish Academy of SciencesGdańskPoland

Personalised recommendations