Advertisement

Invariant-Based Geometrically Nonlinear Formulation of a Triangular Finite Element of Laminated Shells

  • Stanislav V. LevyakovEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 15)

Abstract

A non-standard approach is proposed to develop a simple and computationally effective triangular finite element applicable to geometrically nonlinear analysis of composite shells. The approach is based on the natural components of the stress and strain tensors and their invariants which allow one to express the strain energy of the shell in a compact form without coordinate transformations. The natural components of the tensors are referred to fibers oriented along the triangle edges. An advantage of using the natural strains is that it suffices to approximate one-dimensional functions rather than two-dimensional strain fields over the elemental area. To this end, analytical solutions of auxiliary beam bending problems are used. The validity and accuracy of the approach proposed are verified using benchmark solutions and numerical data available in the literature.

Keywords

Invariants Triangular finite element Natural strain Composite shell Geometrical nonlinearity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyris, J., Tenek, L.: Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method. Computer Methods in Applied Mechanics and Engineering 113, 207–251 (1994)CrossRefGoogle Scholar
  2. 2.
    Argyris, J., Tenek, L.: Natural mode method: A practicable and novel approach to the global analysis of laminated composite plates and shells. Appl. Mech. Rev. 49, 381–399 (1996)CrossRefGoogle Scholar
  3. 3.
    Argyris, J., Tenek, L., Olofsson, L.: TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells. Comput. Methods Appl. Mech. Eng. 145, 11–85 (1997)CrossRefGoogle Scholar
  4. 4.
    Argyris, J.H., Dunne, P.C., Malejannakis, G.A., Schelkle, E.: A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems. Comput. Methods Appl. Mech. Eng. 10, 371–403 (1977)CrossRefGoogle Scholar
  5. 5.
    Bathe, K.J.: Finite Element Procedures. Prentice Hall, New Jersey (1996)Google Scholar
  6. 6.
    Bucalem, M.L., Bathe, K.J.: Finite element analysis of shell structures. Arch. Comput. Meth. Eng. 4(1), 3–61 (1997)CrossRefGoogle Scholar
  7. 7.
    Dau, F., Polit, O., Touratier, M.: C1 plate and shell finite elements for geometrically nonlinear analysis of multilayered structures. Comput. Struct. 84, 1264–1274 (2006)CrossRefGoogle Scholar
  8. 8.
    Gal, E., Levy, R.: Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element. Arch. Comput. Meth. Eng. 13(3), 331–388 (2006)CrossRefGoogle Scholar
  9. 9.
    Kuznetsov, V.V.: Shell theory based on invariants. J. Appl. Mech. Tech. Phys. 32(5), 779–783 (1991)CrossRefGoogle Scholar
  10. 10.
    Kuznetsov, V.V., Levyakov, S.V.: Kinematic groups and finite elements in deformable body mechanics. Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela 3, 67–82 (1994) (in Russian)Google Scholar
  11. 11.
    Kuznetsov, V.V., Levyakov, S.V.: Phenomenological invariant-based finite-element model for geometrically nonlinear analysis of thin shells. Comput. Methods Appl. Mech. Eng. 196, 4952–4964 (2007)CrossRefGoogle Scholar
  12. 12.
    Kuznetsov, V.V., Levyakov, S.V.: Geometrically nonlinear shell finite element based on the geometry of a planar curve. Finite Elements Anal. Design 44, 450–461 (2008)CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, V.V., Levyakov, S.V.: Phenomenological invariants and their application to geometrically nonlinear formulation of triangular finite elements of shear deformable shells. Int. J. Solids Struct. 46, 1019–1032 (2009)CrossRefGoogle Scholar
  14. 14.
    Sze, K.Y., Liu, X.H., Lo, S.H.: Popular benchmark problems for geometric nonlinear analysis of shells.Finite Elements Anal Design 40, 1551–1569 (2004)CrossRefGoogle Scholar
  15. 15.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)Google Scholar
  16. 16.
    Timoshenko, S., Woinowski-Krieger, S.: Theory of plates and shells. 2 edn. McGraw-Hill Inc., New York (1959)Google Scholar
  17. 17.
    Vlachoutsis, S.: Shear correction factors for plates and shells. Int. J. Numer. Methods Eng. 33, 1537–1552 (1992)CrossRefGoogle Scholar
  18. 18.
    Yang, H.T.Y., Saigal, S., Masud, A., Kapania, R.K.: A survey of recent shell finite elements. International Int. J. Numer. Methods Eng. 47, 101–127 (2000)CrossRefGoogle Scholar
  19. 19.
    Yang, Y.B., Shieh, M.S.: Solution method for nonlinear problems with multiple critical points. AIAA J. 28, 2110–2116 (1990)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y.X., Kim, K.S.: A simple displacement-based 3-node triangular element for linear and geometrically nonlinear analysis of laminated composite plates. Comput. Methods Appl. Mech. Eng. 194, 4607–4632 (2005)CrossRefGoogle Scholar
  21. 21.
    Zienkiewicz, O.C., Taylor, R.L.: The finite element method. 2nd edn. Butterworth, Oxford (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Engineering MathematicsNovosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations