Advertisement

Basic Concepts in the Stability Theory of Thin-Walled Structures

  • Ardeshir GuranEmail author
  • Leonid P. Lebedev
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 15)

Abstract

Numerous specialized books and papers have been written about the subject of stability in mechanics. Most of these concentrate on methods for obtaining critical values of certain parameters and typically contain algorithms and graphs generated for describing important but very specific problems. In the present paper we take a step back and discuss the truly central notions regarding mechanical stability. Our intention is to treat the required concepts on a fairly elementary level, while simultaneously offering a bit of useful historical perspective. We also attempt to explain some common discrepancies between theoretical and practical results.

keywords

Stability Thin-wall structure Shell Plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abed, E., Chou, Y., Guran, A., Tits, A.: Nonlinear stabilization and parametric optimization in the benchmark nonlinear control design problem, Proc. IEEE American Control Conf., pp. 4357–4359. Seattle, WA (1995)Google Scholar
  2. 2.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer-Verlag, New York (1995)Google Scholar
  3. 3.
    Atanakovic, T.M., Guran, A.: Theory of Elasticity for Scientists and Engineers Birkhauser. Boston (2000) Google Scholar
  4. 4.
    T.M., Atanackovic, Guran, A.: A generalized Greenhill problem with shear deformation, compressibility and imperfections. Theoretical and Applied Mechanics 25, 1–20 (1999)Google Scholar
  5. 5.
    Beletskii, V.V.: Resonance Phenomena at Rotation of Artificial and Natural Celestial Bodies. In: Giacaglia, G.E.O., (eds.) Satellite Dynamic, pp. 191–232. Springer, Berlin (1975)Google Scholar
  6. 6.
    Blekhman, I.: Selected Topics in Vibrational Mechanics.. World Scientific, Singapore, New Jersey, London,Hong Kong (2004)CrossRefGoogle Scholar
  7. 7.
    Byskov, E.: Smooth postbuckling stresses by a modified finite element method. Int. Journal for Numerical Methods in Engineering. 28, 2877–888 (1989)CrossRefGoogle Scholar
  8. 8.
    Dirichlet, J.P.L.: Über die stabilität des Gleichgewichts. J. reine angew. Math 32, 85–88 (1846)CrossRefGoogle Scholar
  9. 9.
    Euler, L.: Methodus Inveniendi Lineas Curvas; Maximi Minimive Proprietate Gaudentes (Appendix. De Curvas Elasticas). Marcus Michaelem, Bousquet Lausanneand Geneva (1744)Google Scholar
  10. 10.
    Farshad, M., Guran, A.: Adaptive Material and Structures. In: Guran, A., Valasek, M. (eds.), 3rd International Congress on Mechatronic, Prague, Czech Technical University in Prague, pp 319–374 (2004)Google Scholar
  11. 11.
    Guran, A.: On the stability of an elastic imperfect column including axial compressibility. Journal of Applied Mathematics and Mechanics-ZAMM (Zeitschrift fur Angewandte Mathematik und Mechanik) 72(10), 481–485 (1992)CrossRefGoogle Scholar
  12. 12.
    Guran, A.: Influence of various types of load-dependent supports on the stability of a compressible column model. Acta Mech. 97, 91–100 (1993)CrossRefGoogle Scholar
  13. 13.
    Guran, A.: Shape control of smart structures by using fluidic actuators. In: The 3rd International IEEE Scientific Conference on Physics and Control (2007)Google Scholar
  14. 14.
    Guran, A.: Controlling the Chaos Using Fuzzy Estimation in a Gyrostat Satellite. In: Sanjuan, M.A.F., Grebogi, C. (eds.) Recent Progress in Controlling Chaos, World Scientific, Singapore, New Jersey, London, Hong Kong (2010)Google Scholar
  15. 15.
    Guran, A.: Buckling of a column as a benchmark nonlinear control design. In: Kurths, J., Fradkov, A., Chen, G. (eds.) The 3rd international IEEE scientific conference on physics and Control, University of Potsdam, Germany (2007)Google Scholar
  16. 16.
    Guran, A.: Ernst Mach and Peter Salcher: The development of nonlinear wave mechanics during the period 1850–1950. In: International Sysposium Peter Salcher and Ernst Mach: A Successful Teamwork, pp. 23–25. Rijeka, Croatia (2004)Google Scholar
  17. 17.
    Guran, A. et al.: Oscillations, bifurcations and chaos in Ziegler’s pendulum with eccentric load in a gravitational field. In: Proceedings of the 3rd International Conference on Complex Systems and Applications(ICCSA 2009), University of Le Havre Le Havre, Normandy France (2009)Google Scholar
  18. 18.
    Guran, A. et al.:On the stability of a spinning viscoelastic column. Mechanics Based Design of Structures and Machines 19(4), 437–455 (1991)CrossRefGoogle Scholar
  19. 19.
    Guran, A. et al.: Studies in spatial motion of a gyro on an elastic foundation. Mechanics Based Design of Structures and Machines An International Journal 21(2), 185–199 (1993)CrossRefGoogle Scholar
  20. 20.
    Guran, A., Atanackovic, T.M.: Lecture Notes on Theory of Elasticity. St. Petersburg University Press, Petersburg (2002) (in Russian)Google Scholar
  21. 21.
    Guran, A., Atanackovic, T.M.: Fluid conveying pipe with shear and compressibility. Eur. J. Mech., A/Solids 17, 121–137 (1997)CrossRefGoogle Scholar
  22. 22.
    Guran, A., Ahmadi, G.: Postbuckling behavior and imperfection sensivity of an elastic compressible rod whose flexural resistance changes with load. In: Second International Conference on Application of Mathematics in Technical and Natural Sciences., Sozopol, Bulgaria (2010)Google Scholar
  23. 23.
    Guran, A., Bajaj, A., Perkins, N., DEluterio, G., Pierre, C.: Stability of Gyroscopic Systems. World Scientific, Singapore, New Jersey, London, Hong Kong (1999)CrossRefGoogle Scholar
  24. 24.
    Guran A., Khoshnood M. Control of an inverted double pendulum with eccentric fluid load by means of computed torque method. In: Proceedings of EUROMECH Colloquium 515 Advanced Applications and Perspectives of Multibody System Dynamics. pp. 36–37. Blagoevgrad (2010)Google Scholar
  25. 25.
    Guran, A., Sperling, L.: (Guest Editors) Wissenschaftliche Zeitschrift fur Grundlagen und Anwendungen der Technischen Mechanik, 24. Special issue In memoriam Friedrich P.J. Rimrott (2004)Google Scholar
  26. 26.
    Guran, A., Tadjbakhsh, I.G.: A mechanical actuator to suppress vibration. In: Hagood, W., (ed.) Proc. Smart Structures and Materials (SPIE), Smart Structures and Intelligent Systems. pp. 1113–1114 (1917), (1993)Google Scholar
  27. 27.
    Guran, A., Yousefghahari, B.: Biomechanical study of spine. XIII Mediterranean Congress of Rheumatology; Clinical and Experimental Rheumatology 27, 726 (2009)Google Scholar
  28. 28.
    Guran, A., Yousefghahari, B.: A nonlinear multibody system dynamics model to predict the impact response of human chest during cardiopulmonary resuscitations. In: Proceedings of EUROMECH Colloquium 515 Advanced Applications and Perspectives of Multibody System Dynamics, pp. 70–71. Blagoevgrad (2010)Google Scholar
  29. 29.
    Guran, A., Yousefghahari, B.: Shape-control of carbon nanotubes by means of nanofluidic actuators. In: Proc. Workshop on Biomedical applications of functionalized carbon nanotubes, Schloss Eckberg, Dresden Germany (2010)Google Scholar
  30. 30.
    Knops, R.J., Wilkens, E.W.: Theory of Elastic Stability, Handbuch der Physik, Bd. VIa/3.. Springer, Berlin (1973)Google Scholar
  31. 31.
    Koiter, W.T.: On the stability of elastic equilibrium. Delft in Trans NASA, Dissertation, 10, 833 (1945)Google Scholar
  32. 32.
    Koiter W.T. (1963) Elastic stability and postbuckling behavior. In: Langer R.E. (ed.), Proc Symp Non-Lrnear Probl. Univ. of Wisconsin Press, pp. 257–275Google Scholar
  33. 33.
    Koiter, W.T.: The non-linear buckling problem of complete sphercal shells under uniform external pressure. Proc. Konik, Ned. Akad. Wetensch. Ser B 72, 40 (1969)Google Scholar
  34. 34.
    W.T. Koiter (1976) Current trends in the theory of buckling, Buckling Structures, pp. 1–16Google Scholar
  35. 35.
    Lagrange, J.L.: Mécanique Analutique. Courier, Paris (1788)Google Scholar
  36. 36.
    Lebedev, L.P., Cloud, M.J.: The Calculus of Variations, Optimal Control, and Functional Analysis. World Scientific, Singapore, New Jersey, London, Hong Kong (2003)CrossRefGoogle Scholar
  37. 37.
    Lebedev, L.P., Cloud, M.J.: Tensor Analysis. World Scientific, Singapore, New Jersey, London, Hong Kong (2003)CrossRefGoogle Scholar
  38. 38.
    Lebedev, L.P., Cloud, M.J.: Introduction to Mathematical Elasticity. World Scientific, Singapore, New Jersey, London, Hong Kong (2009)CrossRefGoogle Scholar
  39. 39.
    Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, Singapore, New Jersey, London, Hong Kong (2010)CrossRefGoogle Scholar
  40. 40.
    Lebedev, L.P., Vorovich, I.I.: Functional Analysis in Mechanics. Springer, New York (2002)Google Scholar
  41. 41.
    Lebedev, L.P., Vorovich, I.I., Gladwell, G.M.L.: Functional Analysis: Applications in Mechanics and Inverse Problems. Kluwer Academic Publishers (2/e 2002) (1996)Google Scholar
  42. 42.
    Lyapunov, A.M.: On the stability of ellipsoidal figures of equilibrium of a rotating fluid. Master’s thesis, Sankt-Petersbourgue, Akademy of Sciences, pp. 109 (1884) (in Russian)Google Scholar
  43. 43.
    Lyapunov, A.M.: The General Problem of Motion Stability, Doctoral dissertation, p. 250. Kharkov Russia (1892) (in Russian)Google Scholar
  44. 44.
    Merkin, D.R.: Introduction to Stability of Motion. Springer, New York (1996)Google Scholar
  45. 45.
    Movchan, A.A.: On the direct Liapunov method in the stability problems for elastic systems. Prikl. Mat. Mekh. 23(3) (1959) (in Russian)Google Scholar
  46. 46.
    Movchan, A.A.: On stability of motion of continuous bodies. Lagrange’s theorem and its inverse. Inzhenernyj sbornik, vol. 29 (1960) (in Russian)Google Scholar
  47. 47.
    Olesen, J.F., Byskov, E.: Accurate detemination of asymptotic postbuckling stresses by the finite element method. Computer and Structures 15, 157–163 (1982)CrossRefGoogle Scholar
  48. 48.
    Palassopoulos, G.V.: Effect of stochastic imperfections on the buckling strength of imperfectionsensitive structures". In: Fifth World Congress on Computational Mechanics, Austria, Vienna (2002)Google Scholar
  49. 49.
    Plaut, R.H., Guran, A.: Buckling of plates with stiffening elastically restrained edges. Journal of Engineering Mechanics–ASCE 120(2), 408–411 (1994)CrossRefGoogle Scholar
  50. 50.
    Roorda, J.: Stability of structures with small imperfections. Journal of Engineering Mechanics–ASCE, pp 87–106 (1965)Google Scholar
  51. 51.
    Roorda, J., Chilver, A.H.: Frame buckling: an illustration of the perturbation technique. Int. J. Non-Linear Mechanics 5, 235–246 (1970)CrossRefGoogle Scholar
  52. 52.
    Seyranian, A.P., Mailybeav, A.A.: Multiparameter Stability Theory with Mechanical Applications. World Scientific, Singapore, New Jersey, London, Hong Kong (2003)CrossRefGoogle Scholar
  53. 53.
    Tabarrok, B., Rimrott, F.P.J.: Variational Methods and Complementary Formulations in Dynamics. Kluwer Academic Publishers, Netherland (1994)Google Scholar
  54. 54.
    Tovstik, P.E., Smirnov, A.L.: Asymptotic Methods in the Buckling Theory of Elastic Shells. World Scientific, Singapore, New Jersey, London, Hong Kong (2001)CrossRefGoogle Scholar
  55. 55.
    Vorovich, I.I.: Some question of shell stability “in the large". Dokl. Akad. Nauk SSSR 122, 37–40 (1958)Google Scholar
  56. 56.
    Vorovich, I.I.: The problem of non-uniqueness and stability in the non-linear mechanics of continuum mechanics. In: Applied Mechanics, Proc. 13th Int. Congr. Theor. Appl. Mech, pp. 340–357. Springer, Berlin (1973)Google Scholar
  57. 57.
    Vorovich, I.I.: Nonlinear Theory of Shallow Shells. Springer, New York, 1999, Translation from Russian edition by Nauka, Moscow (1989) Google Scholar
  58. 58.
    Vorovich, I.I., Lebedev, L.P.: Some issues of continuum mechanics and mathematical problems in the theory of thin-walled structures. International Applied Mechanics (Prikladnaya Mekhanika) 38(4), 387–398 (2002)CrossRefGoogle Scholar
  59. 59.
    Yakubovich, V.A., Leonov, G.A., Gelig, A.Kh.: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. World Scientific, Singapore, New Jersey, London, Hong Kong (2004)Google Scholar
  60. 60.
    Yurkevich, V., Guran, A.: Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities (Book Reviews). IEEE Transaction on Automatic Control 50(4), 542–543 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of StructronicsLinzAustria
  2. 2.Abteilung Robotik, Johannes Kepler UniversityLinzAustria
  3. 3.Universidad Nacional de ColombiaBogotá D.C.Colombia

Personalised recommendations