Advertisement

Individual Differences and the Science of Human Performance

  • Michael Trumbo
  • Susan Stevens-Adams
  • Stacey M. L. Hendrickson
  • Robert Abbott
  • Michael Haass
  • Chris Forsythe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6780)

Abstract

This study comprises the third year of the Robust Automated Knowledge Capture (RAKC) project. In the previous two years, preliminary research was conducted by collaborators at the University of Notre Dame and the University of Memphis. The focus of this preliminary research was to identify relationships between cognitive performance aptitudes (e.g., short-term memory capacity, mental rotation) and strategy selection for laboratory tasks, as well as tendencies to maintain or abandon these strategies. The current study extends initial research by assessing electrophysiological correlates with individual tendencies in strategy selection. This study identifies regularities within individual differences and uses this information to develop a model to predict and understand the relationship between these regularities and cognitive performance.

Keywords

Individual Differences EEG Memory Span RAT Attentional Beam Mental Rotation Ruff Attention Task Raven’s Matrices Box Folding Dual Task Barton’s Binary Stroop N-back Mismatch Negativity P300 Oddball Semantic Memory Episodic Memory Go/No-Go Flanker Line Drawing MAT-B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Razumnikova, O.M.: Creativity Related Cortex Activity in the Remote Associates Task. Brain Res. Bull. 73, 96–102 (2007)CrossRefGoogle Scholar
  2. 2.
    Radvansky, G.A., D’Mello, S., Abbott, R.G., Moregan, B., Fike, K., Tamplin, A.K.: Rum Runner: A Model of Strategy Switching. J. Cogn. Neurosci. (submitted, 2011)Google Scholar
  3. 3.
    Comstock, J. J.R., Arnegard, R.J.: The Multi-Attribute Task Battery for Human Operator Workload and Strategic Behavior Research. NASA Technical Memorandum 104174 (1992)Google Scholar
  4. 4.
    Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., Kupfer, D.J.: The Pittsburgh Sleep Quality Index (PSQI): A New Instrument for Psychiatric Research and Practice. Psychiatry Research 28(2), 193–213 (1989)CrossRefGoogle Scholar
  5. 5.
    Feng, J., Spence, I., Pratt, J.: Playing an Action Video Game Reduces Gender Differences in Spatial Cognition. Psychol. Sci. 18(10), 850–855 (2007)CrossRefGoogle Scholar
  6. 6.
    Knight, R.G., McMahon, J., Skeaff, C.M., Green, T.J.: Reliable Change Indices for the Ruff 2 and 7 Selective Attention Test in Older Adults. Appl. Neuropsychol. 17(4), 239–245 (2010)CrossRefGoogle Scholar
  7. 7.
    McEvoy, L., Pellouchoud, E., Smith, M., Gevins, A.: Neurophysiological Signals of Working Memory in Normal Aging. Cog. Brain Res. 11(3), 363–376 (2001)CrossRefGoogle Scholar
  8. 8.
    Darwin, C.: On the Origins of the Species by means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life, London (1859)Google Scholar
  9. 9.
    Jensen, P.: Individual Variation in the Behaviour of Pigs – Noise or Functional Coping Strategies? App. Animal Beh. Sci. 44, 245–255 (1995)CrossRefGoogle Scholar
  10. 10.
    Hsu, N.S., Kraemer, D.J., Oliver, R.T., Schlichting, M.L., Thompson-Schill, S.L.: Color, Context, and Cognitive Style: Variations in Color Knowledge Retrieval as a Function of Task and Subject Variables. J. Cogn. Neurosci. Submitted [Epub ahead of print] (2011)Google Scholar
  11. 11.
    Stiles, J.: On Genes, Brains, and Behavior: Why Should Developmental Psychologists Care About Brain Development? Child Devel. Perspec. 3(3), 196–202 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael Trumbo
    • 1
  • Susan Stevens-Adams
    • 1
  • Stacey M. L. Hendrickson
    • 1
  • Robert Abbott
    • 1
  • Michael Haass
    • 1
  • Chris Forsythe
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerque

Personalised recommendations