Augmenting Brain and Cognition by Aerobic Exercise

  • Kirk I. Erickson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6780)


Cognitive function declines in late adulthood and this is preceded by atrophy of the prefrontal cortex, hippocampal formation, and parietal cortex. Despite significant loss of brain tissue in late adulthood, decline is not ubiquitous across all older adults. In fact, some adults age quite successfully with minimal decline. This suggests that brain deterioration might not be an inevitable consequence of aging. In fact, mounting evidence suggests that participation in regular aerobic exercise is effective at enhancing cognitive and brain health in late adulthood. In this paper we discuss the evidence that cardiorespiratory fitness and aerobic exercise augments cognition by increasing gray matter volume in prefrontal and hippocampal brain regions.


Aging brain atrophy exercise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    US Census Bureau,
  2. 2.
    : Alzheimer’s disease facts and figures: Alzheimers Dement., vol. 6, pp. 158–194 (2010)Google Scholar
  3. 3.
    Hertzog, C., Kramer, A.F., Wilson, R.S., Lindenberger, U.: Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest 9, 1–65 (2009)CrossRefGoogle Scholar
  4. 4.
    Kennedy, K.M., Erickson, K.I., Rodrigue, K.M., Voss, M.W., Colcombe, S.J., Kramer, A.F., et al.: Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging 30, 1657–1676 (2009)CrossRefGoogle Scholar
  5. 5.
    Jack Jr., C.R., Peterson, R.C., Xu, Y., et al.: Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51, 993–999 (1998)CrossRefGoogle Scholar
  6. 6.
    Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, C., Ehninger, D., Kempermann, G.: Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27, 1505–1513 (2006)CrossRefGoogle Scholar
  7. 7.
    Kramer, A.F., Erickson, K.I., Colcombe, S.J.: Exercise, cognition and the aging brain. Journal of Applied Physiology 101(4), 1237–1242 (2006)CrossRefGoogle Scholar
  8. 8.
    Cotman, C.W., Berchtold, N.C.: Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002)CrossRefGoogle Scholar
  9. 9.
    van Praag, H., Shubert, T., Zhao, C., Gage, F.H.: Exercise enhances learning and hippocampal neurogenesis in aged mice. J. Neurosci. 25, 8680–8685 (2005)CrossRefGoogle Scholar
  10. 10.
    Vaynman, S., Ying, Z., Gomez-Pinilla, F.: Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590 (2004)CrossRefGoogle Scholar
  11. 11.
    Spirduso, W.W.: Reaction and movement time as a function of age and physical activity level. Journal of Gerontology 30, 435–440 (1975)CrossRefGoogle Scholar
  12. 12.
    Colcombe, S.J., Kramer, A.F.: Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science 14, 125–130 (2003)CrossRefGoogle Scholar
  13. 13.
    Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Wadhwa, R., McAuley, E., Kramer, A.F.: Aerobic exercise training increases brain volume in aging humans: evidence from a randomized clinical trial. Journal of Gerontology: Biological and Medical Sciences 61, 1166–1170 (2006)Google Scholar
  14. 14.
    Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Hu, L., Morris, K.S., et al.: Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19, 1030–1039 (2009)CrossRefGoogle Scholar
  15. 15.
    Chaddock, L., Erickson, K.I., Prakash, R.S., Kim, J.S., Voss, M.W., VanPatter, M., et al.: A neuroimaging investigation of the association between aerobic fitness, hippocampal volume and memory performance in preadolescent children. Brain Research 1358, 172–183 (2010)CrossRefGoogle Scholar
  16. 16.
    Honea, R.A., Thomas, G.P., Harsha, A., Anderson, H.S., Donnelly, J.E., Brooks, W.M., Burns, J.M.: Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 23, 188–197 (2009)CrossRefGoogle Scholar
  17. 17.
    Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., et al.: Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences (in press)Google Scholar
  18. 18.
    Kramer, A.F., Erickson, K.I.: Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences 11, 342–348 (2007)CrossRefGoogle Scholar
  19. 19.
    Erickson, K.I., Raji, C.A., Lopez, O.L., Becker, J.T., Rosano, C., Newman, A.B., et al.: Physical activity predicts gray matter volume in late adulthood: The cardiovascular health study. Neurology 75, 1415–1422 (2010)CrossRefGoogle Scholar
  20. 20.
    Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., et al.: Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America 101, 3316–3321 (2004)CrossRefGoogle Scholar
  21. 21.
    Rosano, C., Venkatraman, V.K., Guralnik, J., Newman, A.B., Glynn, N.W., Launer, L., et al.: Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences 65, 639–647 (2010)CrossRefGoogle Scholar
  22. 22.
    Smith, J.C., Nielson, K.A., Woodard, J.L., Seidenberg, M., Durgerian, S., Antuono, P., et al.: Interactive effects of physical activity and APOE-e4 on BOLD semantic memory activation in healthy elders. Neuroimage 54, 635–644 (2011)CrossRefGoogle Scholar
  23. 23.
    Prakash, R.S., Voss, M.W., Erickson, K.I., Lewis, J.M., Chaddock, L., Malkowski, E., et al.: Capitalizing on PASA: Cardiorespiratory fitness predicts neural flexibility of anterior processing regions in older adults. Frontiers in Human Neuroscience (2011)Google Scholar
  24. 24.
    Voss, M.W., Erickson, K.I., Prakash, R.S., Chaddock, L., Malkowski, E., Alves, H., et al.: Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? Neuropsychologia 48, 1394–1406 (2010)CrossRefGoogle Scholar
  25. 25.
    Voss, M.W., Prakash, R.S., Erickson, K.I., Basak, C., Chaddock, L., Kim, J.S., et al.: Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience 2, 1–17 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kirk I. Erickson
    • 1
  1. 1.Department of Psychology Center for the Neural Basis of CognitionUniversity of PittsburghUSA

Personalised recommendations