Challenges and Solutions with Augmented Cognition Technologies: Precursor Issues to Successful Integration 

  • Joseph Cohn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6780)


Today’s combat environment requires increasingly complex interactions between human operators and their systems. Whereas in the past, the roles of human and system were clearly delineated, with the integration of advanced technologies into the C4ISR toolkit, the distinct parsing of tasks has given way to paradigms in which the human operator’s roles and responsibilities must dynamically change according to task and context. Yet, current methodologies for integrating the human into the system have not kept pace with this shift. An important consequence of this mismatch between human operator and system is that failures often lead to catastrophic and unrecoverable accidents (O’Connor & Cohn, 2010). In order to reintegrate the human element back into the system, new approaches for representing operator performance, in terms of their individual cognitive and behavioral capacities, limitations and changing needs are required.


Neuroscience Cognition Autonomy Human Systems Information Processing Adaptive Cognitive Architecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.R.: ACT: A simple theory of complex cognition. American Psychologist 51, 355–365 (1996)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R., Carter, C.S., Fincham, J.M., Qin, Y., Ravizza, S.M., Rosenberg-Lee, M.: Using fMRI to Test Models of Complex Cognition. Cognitive Science 32, 1323–1348 (2008)CrossRefGoogle Scholar
  3. 3.
    Bates, J.A.V.: Some characteristics of a human operator. Journal of the Institute of Electrical Engineering 94, 298–304 (1947)Google Scholar
  4. 4.
    Birmingham, H.P., Taylor, F.V.: A design philosophy for man-machine control systems. Proceedings of th e I.R.E. 42(12), 1748–1758 (1954)CrossRefGoogle Scholar
  5. 5.
    Cohn, J.V., Wheeler, T.: Neuroadaptive systems: challenges and opportunities with creating symbiotic relationships between humans and the machines they use. In: Fafrowicz, M., Marek, T., Karwowski, W., Schmorrow, D. (eds.) Neuroadaptive Systems: Research, Theory, and Applications, CRC Press, Boca Raton (2010)Google Scholar
  6. 6.
    Cohn, J.V., Forsythe, C.J.: The Effective Use of Performance Enhancing Technologies: Mechanisms, Applications and Policies. Technology 11, 107–126 (2008); Craik, K.J.W.: Theory of the human operator in control systems I: The operation of the human operator in control systems. British Journal of Psychology 38, 56–61 (1947/1948) Google Scholar
  7. 7.
    Craik, K.J.W.: Theory of the human operator in control systems II: Man as an element in a control system. British Journal of Psychology 38, 142–148 (1948)Google Scholar
  8. 8.
    Fleischer, J.G., Krichmar, J.L.: Sensory integration and remapping in a medial temporal lobe model during maze navigation by a brain-based device. Journal of Integrative Neuroscience 6(3), 403–431 (2007)CrossRefGoogle Scholar
  9. 9.
    Hammer, J.M., Small, R.L.: An intelligent interface in an associate system. In: Rouse, W.B. (ed.) Human/Technology Interaction in Complex Systems, vol. 7, pp. 1–44. JAI Press, Greenwich (1995)Google Scholar
  10. 10.
    Hodgkinson, G.P., Langan-Fox, J., Sadler-Smith, E.: Intuition: A fundamental bridging construct in the behavioral sciences. British Journal of Psychology 99(1), 1–27 (2008)CrossRefGoogle Scholar
  11. 11.
    Junghöfer, M., Elbert, T., Tucker, D.M., Rockstroh, B.: Statistical control of artifacts in dense array EEG/MEG studies. Psychophysiology 37(4), 523–532 (2000)CrossRefGoogle Scholar
  12. 12.
    Kahana, M.J.: The cognitive correlates of human brain oscillations. The Journal of Neuroscience 26(6), 1669–1672 (2006)CrossRefGoogle Scholar
  13. 13.
    Kay, K.N., Naselaris, T., Prenger, R.J., Gallant, J.L.: Identifying natural images from human brain activity. Nature 452, 352–355 (2008)CrossRefGoogle Scholar
  14. 14.
    Kelso, J.A.S.: Dynamic patterns: The self-organization of brain and behavior. MIT Press, Cambridge (1995)Google Scholar
  15. 15.
    Lim, B.C., Klein, K.J.: Team mental models and team performance: A field study of the effects of team mental model similarity and accuracy. Journal of Organizational Behaviour 27, 403–418 (2006)CrossRefGoogle Scholar
  16. 16.
    Licklider, J.C.R.: Man-computer symbiosis. IEEE Transactions on Human Factors in Electronics HFE-1, 4–11 (1960)CrossRefGoogle Scholar
  17. 17.
    Logothetis, N.K.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150 (2001)CrossRefGoogle Scholar
  18. 18.
    Luu, P., Geyer, A., Wheeler, T., Campbell, G., Tucker, D., Cohn, J.: The Neural Dynamics and Temporal Course of Intuitive Decisions. Public Library Of Science (2010)Google Scholar
  19. 19.
    Mitchell, T., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M.A., Newman, S.D.: Learning to decode cognitive states from brain images. Machine Learning 57, 145–175 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.-M., Malave, V.L., Mason, R.A., Just, M.A.: Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195 (2008)CrossRefGoogle Scholar
  21. 21.
    O’Connor, P.E., Cohn, J.V. (eds.): Human Performance Enhancement in High-Risk Environments. Praeger Security International, Santa Barbara (2010)Google Scholar
  22. 22.
    Osipova, D., Takashima, A., Oostenveld, R., Fernandez, G., Maris, E., Jensen, O.: Theta and gamma oscillations predict encoding and retrieval of declarative memory. The Journal of Neuroscience 26(28), 7523–7531 (2006)CrossRefGoogle Scholar
  23. 23.
    Palva, J.M., Palva, S., Kaila, K.: Phase Synchrony among Neuronal Oscillations in the Human Cortex. Journal of Neuroscience 25(15), 3962–3972 (2005)CrossRefGoogle Scholar
  24. 24.
    Philiastides, M.G., Sajda, P.: EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. Journal of Neuroscience 27(48), 13082–13091 (2007)CrossRefGoogle Scholar
  25. 25.
    Rensink, R.A.: Visual sensing without seeing. Psychological Science 15, 27–32 (2004)CrossRefGoogle Scholar
  26. 26.
    Rouse, W.B.: Human-computer interaction in multitask situations. IEEE Transactions Systems, Man, and Cybernetics SMC-7, 293–300 (1977)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rouse, W.B.: Human-computer interaction in multitask situations. IEEE Transactions Systems, Man, and Cybernetics SMC-7, 293–300 (1977)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Scerbo, M.W.: Theoretical perspectives on adaptive automation. In: Parasuraman, R., Mouloua, M. (eds.) Automation and Human Performance: Theory and Applications, pp. 37–63. Lawrence Erlbaum Associates, Mahwah (1996)Google Scholar
  29. 29.
    Shinkareva, S.V., Mason, R.A., Malave, V.L., Wang, W., Mitchell, T.M., Just, M.A.: Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings. PLoS ONE 3, e1394 (2008)CrossRefGoogle Scholar
  30. 30.
    Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)CrossRefGoogle Scholar
  31. 31.
    Volz, K.G., von Cramon, D.Y.: What Neuroscience Can Tell about Intuitive Processes in the Context of Perceptual Discovery. Journal of Cognitive Neuroscience 18(12), 2077–2087 (2006)CrossRefGoogle Scholar
  32. 32.
    Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance, 3rd edn. Prentice Hall, Upper Saddle River (2000)Google Scholar
  33. 33.
    Wilson, K.A., Salas, E., Priest, H.A., Andrews, D.: Errors in the heat of battle: Taking a closer look at shared cognition breakdowns through teamwork. Human Factors 49, 243–256 (2007)CrossRefGoogle Scholar
  34. 34.
    Woods, D.D.: Decomposing automation: Apparent simplicity, real complexity. In: Parasuraman, R., Mouloua, M. (eds.) Automation and Human Performance: Theory and Applications, pp. 3–18. Lawrence Erlbaum Associates, Mahwah (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joseph Cohn
    • 1
  1. 1.Office of Naval; ResearchHuman and Bioengineered Systems DivisionArlington

Personalised recommendations