Skip to main content

Cluster Perturbation Theory

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 171))

Abstract

Cluster perturbation theory (CPT) is a simple approximation scheme that applies to lattice models with local interactions, like the Hubbard model, or models where the local interaction is predominant. It proceeds by tiling the lattice into identical, finite-size clusters, solving these clusters exactly and treating the inter-cluster hopping terms at first order in strong-coupling perturbation theory. This review will focus on the kinematical aspects of CPT, in particular the periodization procedure, and on the practical implementation of CPT using an exact diagonalization solver for the cluster. Applications of CPT will be briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the VCA, \(\vec{V }\) is the difference between the lattice Hamiltonian H and the reference Hamiltonian H′, and as such may also contain intra-cluster terms.

  2. 2.

    For simplicity, we will suppress the spin and band indices \(\sigma \) in this section, but the whole discussion is trivially generalized to the case where there are many electron states per lattice site.

  3. 3.

    Dependence on quasi-continuous indices, like \(\vec{k}\) and \(\tilde{\vec{k}}\), will be indicated by parentheses instead of subscripts. This notation may rightfully be deemed capricious, since the labels i and \(\vec{k}\) take the same number N of values, but we adopt it nonetheless as it helps reminding us that the values of the labels are closely separated.

  4. 4.

    We use the term Brillouin zone in a rather liberal manner, as a complete and irreducible set of wavevectors, and not as the Wigner–Seitz cell of the reciprocal lattice.

References

  1. S. Pairault, D. Sénéchal, A.M.S. Tremblay, Phys. Rev. Lett. 80, 5389 (1998)

    Article  ADS  Google Scholar 

  2. D. Sénéchal, D. Perez, D. Plouffe, Phys. Rev. B 66, 075129 (2002)

    Article  ADS  Google Scholar 

  3. C. Gros, R. Valenti, Phys. Rev. B 48, 418 (1993)

    Article  ADS  Google Scholar 

  4. D. Sénéchal, D. Perez, M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000)

    Article  ADS  Google Scholar 

  5. S. Pairault, D. Sénéchal, A.M. Tremblay, Eur. Phys. J. B 16, 85 (2000)

    Article  ADS  Google Scholar 

  6. M. Potthoff, M. Aichhorn, C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

    Article  ADS  Google Scholar 

  7. M.T. Tran, Phys. Rev. B 74(15), 155121 (2006)

    Article  ADS  Google Scholar 

  8. M. Aichhorn, E. Arrigoni, M. Potthoff, W. Hanke, Phys. Rev. B 74(23), 235117 (2006)

    Article  ADS  Google Scholar 

  9. A. Ruhe, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, PA, 2000), chap. 4.1

    Google Scholar 

  10. E. Dagotto, Rev. Mod. Phys. 66(3), 763 (1994)

    Article  ADS  Google Scholar 

  11. R. Freund, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, PA, 2000), chap. 4.6

    Google Scholar 

  12. N. Laflorencie, D. Poilblanc, in Quantum Magnetism. Lecture Notes in Physics, vol. 645 (Springer, Berlin, 2004), pp. 227–252

    Google Scholar 

  13. A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78(1), 275 (2006)

    Article  ADS  MATH  Google Scholar 

  14. F. Lin, E.S. Sørensen, C. Kallin, A.J. Berlinsky, Phys. Rev. B 75(7), 075112 (2007)

    Article  ADS  Google Scholar 

  15. F. Lin, E.S. Sørensen, C. Kallin, A.J. Berlinsky, J. Phys. Condens. Matter 19(45), 456206 (2007)

    Article  ADS  Google Scholar 

  16. G. Li, W. Hanke, A.N. Rubtsov, S. Bäse, M. Potthoff, Phys. Rev. B 80(19), 195118 (2009)

    Article  ADS  Google Scholar 

  17. G. Kotliar, S. Savrasov, G. Pálsson, G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)

    Article  ADS  Google Scholar 

  18. M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, Phys. Rev. B 69(19), 195105 (2004)

    Article  ADS  Google Scholar 

  19. T.D. Stanescu, G. Kotliar, Phys. Rev. B 74(12), 125110 (2006)

    Article  ADS  Google Scholar 

  20. D. Sénéchal, A.M.S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004)

    Article  ADS  Google Scholar 

  21. N. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002)

    Article  ADS  Google Scholar 

  22. F. Ronning et al., Phys. Rev. B 67, 165101 (2003)

    Article  ADS  Google Scholar 

  23. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20(25), 1445 (1968)

    Article  ADS  Google Scholar 

  24. C. Dahnken, E. Arrigoni, W. Hanke, J. Low Temp. Phys. 126(3-4), 949 (2002)

    Article  Google Scholar 

  25. E. Arrigoni, M. Aichhorn, M. Daghofer, W. Hanke, New J. Phys. 11(5), 055066 (2009)

    Article  ADS  Google Scholar 

  26. S.H. ans S Kudo, T. Shirakawa, Y. Ohta, J. Phys. Conf. Ser. 150, 042060 (2009)

    Google Scholar 

  27. W.Z. Wang, Phys. Rev. B 73(23), 235325 (2006)

    Article  ADS  Google Scholar 

  28. M. Zacher, R. Eder, E. Arrigoni, W. Hanke, Int. J. Modern Phys. B 14(29-31), 3783 (2000)

    ADS  Google Scholar 

  29. M. Zacher, R. Eder, E. Arrigoni, W. Hanke, Phys. Rev. Lett. 85(12), 2585 (2000)

    Article  ADS  Google Scholar 

  30. A.S. Ovchinnikov, I.G. Bostrem, V.E. Sinitsyn, Theor. Math. Phys. 162, 179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Pollmann, G. Zwicknagl, Phys. Rev. B 73(3), 035121 (2006)

    Article  ADS  Google Scholar 

  32. K. Asano, T. Nishida, T. Ogawa, Phys. Status Solidi (B) 245, 2729 (2008)

    Google Scholar 

  33. M. Zacher, R. Eder, E. Arrigoni, W. Hanke, Phys. Rev. B 65(4), 045109 (2002)

    Article  ADS  Google Scholar 

  34. M. Aichhorn, H.G. Evertz, W. von der Linden, M. Potthoff, Phys. Rev. B 70(23), 235107 (2004)

    Article  ADS  Google Scholar 

  35. H. Zhao, C.Q. Wu, H.Q. Lin, Phys. Rev. B 71(11), 115201 (2005)

    Article  ADS  Google Scholar 

  36. C. Zhang, E. Jeckelmann, S.R. White, Phys. Rev. Lett. 80(12), 2661 (1998)

    Article  ADS  Google Scholar 

  37. C. Zhang, E. Jeckelmann, S.R. White, Phys. Rev. B 60(20), 14092 (1999)

    Article  ADS  Google Scholar 

  38. A. Weiße, H. Fehske, G. Wellein, A.R. Bishop, Phys. Rev. B 62(2), R747 (2000)

    Article  ADS  Google Scholar 

  39. W.Q. Ning, H. Zhao, C.Q. Wu, H.Q. Lin, Phys. Rev. Lett. 96(15), 156402 (2006)

    Article  ADS  Google Scholar 

  40. M. Sing, U. Schwingenschlögl, R. Claessen, P. Blaha, J. Carmelo, L. Martelo, P. Sacramento, M. Dressel, C. Jacobsen, Phys. Rev. B 68(12), 125111 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the following people for discussions which, over the years, have strengthened and widened his understanding of quantum cluster methods: M. Civelli, G. Kotliar, B. Kyung, M. Jarrell, Th. Maier, S. Okamoto, D. Plouffe, M. Potthoff, A-M. Tremblay, and C. Weber. Computational resources for this review were provided by RQCHP and Compute Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sénéchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sénéchal, D. (2012). Cluster Perturbation Theory. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21831-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21831-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21830-9

  • Online ISBN: 978-3-642-21831-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics