Skip to main content

Projected Wavefunctions and High T c Superconductivity in Doped Mott Insulators

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 171))

Abstract

We review the use of projected wavefunctions to gain insight into the strongly correlated d-wave superconducting state of high T c cuprates within the framework of the large U Hubbard model. Using sum rules, we show that doped Mott insulators exhibit a strong particle-hole asymmetry in their single-particle spectral function. We calculate the doping dependence of a variety of observables using a simple approximation scheme, the Gutzwiller approximation, and compare the results with variational Monte Carlo results and with experimental data on the cuprates. We gain detailed insights into the superconducting dome, the energy gap, nodal excitations, their quasiparticle weight and dispersion, momentum distribution, superfluid stiffness, and optical spectral weight. We show that strong correlations make the d-wave state robust against disorder-induced pair breaking. Finally, we discuss the competition between antiferromagnetism and superconductivity, the difference between hole and electron-doped Mott insulators, and how the range of hopping enhances superconductivity for hole-doped materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gutzwiller’s original proposal is \({\mathcal{P}}_{\alpha } ={ \prod \nolimits }_{i}(1 - \alpha {n}_{i\uparrow }{n}_{i\downarrow })\), where α < 1 is treated as a variational parameter. This is often called the partial Gutzwiller projector. The one we use is the full projector given by α = 1.

References

  1. J.C. Bednorz, K.A. Muller, Z. Phys B 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  3. S. Liang, B. Ducot, P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988)

    Article  ADS  Google Scholar 

  4. G. Baskaran, Z. Zhou, P.W. Anderson, Solid State Comm. 63, 973 (1987)

    Article  ADS  Google Scholar 

  5. G. Kotliar, J. Liu, Phys. Rev. B 38, 5142 (1988)

    Article  ADS  Google Scholar 

  6. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  7. C. Gros, Phys. Rev. B 38, 931 (1988)

    Article  ADS  Google Scholar 

  8. F.C. Zhang, C. Gros, T.M. Rice, H. Shiba, Supercond. Sci. Tech. 1, 36 (1988)

    Article  ADS  Google Scholar 

  9. D. J. Scalapino, J.E. Loh, J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

    Article  ADS  Google Scholar 

  10. A. Paramekanti, M. Randeria, N. Trivedi, Phys. Rev. Lett. 87, 217002 (2001)

    Article  ADS  Google Scholar 

  11. A. Paramekanti, M. Randeria, N. Trivedi, Phys. Rev. B 70, 054504 (2004)

    Article  ADS  Google Scholar 

  12. P.W. Anderson, P.A. Lee, M. Randeria, T.M. Rice, N. Trivedi, F.C. Zhang, J Phys. Condens. Matter 16, R755 (2004)

    Article  ADS  Google Scholar 

  13. B. Edegger, C. Gros, V.N. Muthukumar, Adv. Phys. 56, 927 (2007)

    Article  ADS  Google Scholar 

  14. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

    Article  ADS  Google Scholar 

  15. C. Gros, R. Joynt, T.M. Rice, Phys. Rev. B 36, 381 (1987)

    Article  ADS  Google Scholar 

  16. A.H. Mcdonald, S.M. Girvin, D. Yoshioka, Phys. Rev. B 37, 9753 (1988)

    Article  ADS  Google Scholar 

  17. A.B. Harris, R.V. Lange, Phys. Rev. 157, 295 (1967)

    Article  ADS  Google Scholar 

  18. M.B.J. Meinders, H. Eskes, G. Sawatzky, Phys. Rev. B 48, 3916 (1993)

    Article  ADS  Google Scholar 

  19. H. Eskes, A.M. Oles, Phys. Rev. Lett. 73, 1279 (1993)

    Article  ADS  Google Scholar 

  20. H. Eskes et al., Phys. Rev. B 50, 17980 (1994)

    Article  ADS  Google Scholar 

  21. M. Randeria, R. Sensarma, N. Trivedi, F.C. Zhang, Phys. Rev. Lett. 95, 137001 (2005)

    Article  ADS  Google Scholar 

  22. P.W. Anderson, N.P. Ong, J. Phys. Chem. Solids 67, 1 (2006)

    Article  ADS  Google Scholar 

  23. S.H. Pan et al., Nature 413, 282 (2001)

    Article  ADS  Google Scholar 

  24. J.E. Hoffman et al., Science 297, 1148 (2002)

    Article  ADS  Google Scholar 

  25. K. McKelroy et al., Nature 422, 592 (2003)

    Article  ADS  Google Scholar 

  26. H. Hanaguri et al., Nature 430, 1001 (2004)

    Article  ADS  Google Scholar 

  27. P. Phillips, T-P. Choy, and R.G. Leigh, Rep. Prog. Phys. 72, 036501 (2009)

    Google Scholar 

  28. Y. Kohsaka et al., Science 315, 1380 (2007)

    Article  ADS  Google Scholar 

  29. D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)

    Article  ADS  Google Scholar 

  30. J.Y. Gan, Y. Chen, Z.B. Su, F.C. Zhang, Phys. Rev. Lett. 94, 067005 (2005)

    Article  ADS  Google Scholar 

  31. J. Y. Gan, F.C. Zhang, Z.B. Su, Phys. Rev. B 71, 014508 (2005)

    Article  ADS  Google Scholar 

  32. H.X. Huang, Y.Q. Li, F.C. Zhang, Phys. Rev. B 71, 184514 (2005)

    Article  ADS  Google Scholar 

  33. D. Poilblanc, Phys. Rev. B 72, 060508(R) (2005)

    Google Scholar 

  34. C. Li, S. Zhou, Z. Wang, Phys. Rev. B 73, 060501(R) (2006)

    Google Scholar 

  35. A. Garg, M. Randeria, N. Trivedi, Nat. Phys. 4, 762 (2008)

    Article  Google Scholar 

  36. W-H. Ko, C.P. Nave, P.A. Lee, Phys. Rev. B 76, 245113 (2007)

    Google Scholar 

  37. M. Sigrist, T.M. Rice, F.C. Zhang, Phys. Rev. B 49, 12058 (1994)

    Article  ADS  Google Scholar 

  38. M. Ogata, A. Himeda, J. Phys. Soc. Jpn. 72, 374 (2003)

    Article  ADS  MATH  Google Scholar 

  39. T. Ogawa, K. Kanda, T. Matsubara, Prog. Theor. Phys. 53, 614 (1975)

    Article  ADS  Google Scholar 

  40. R. Sensarma, Ph.D. Thesis, The Ohio State University (2007)

    Google Scholar 

  41. J.C. Campuzano, M.R. Norman, M. Randeria, in Physics of Superconductors, vol. II, ed. by K.H. Bennemann, J.B. Ketterson (Springer, Berlin, 2004), pp. 167

    Chapter  Google Scholar 

  42. A. Damasceli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  43. J.M. Tranquada et al., Phys. Rev. B 40, 4503 (1989)

    Article  ADS  Google Scholar 

  44. J.C. Campuzano et al., Phys. Rev. Lett. 83, 3709 (1999)

    Article  ADS  Google Scholar 

  45. M.R. Presland et al., Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  46. P.D. Johnson et al., Phys. Rev. Lett. 87, 177007 (2001)

    Article  ADS  Google Scholar 

  47. K.M. Shen, J.C. Davis, Materials Today 11, 14 (2008)

    Article  Google Scholar 

  48. O. Fischer et al., Rev. Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  49. A. Kaminski et al., Phys. Rev. Lett. 84, 1788 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  50. D.N. Basov, T. Timusk, Rev. Mod. Phys. 77, 721 (2005)

    Article  ADS  Google Scholar 

  51. R. Sensarma, M. Randeria, N. Trivedi, Phys. Rev. Lett. 98, 027004 (2007)

    Article  ADS  Google Scholar 

  52. C. Gros, B. Edegger, V.N. Muthukumar, P.W. Anderson, Proc. Nat. Acad. Sci. 103, 14298 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. T. Yoshida et al., Phys. Rev. B 74, 224510 (2006)

    Article  ADS  Google Scholar 

  54. Y.J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989)

    Article  ADS  Google Scholar 

  55. I. Hetel, T.R. Lemberger, M. Randeria, Nat. Phys. 3, 700 (2007)

    Article  Google Scholar 

  56. J.L. Tallon et al., Phys. Rev. B 68, 180501 (2003)

    Article  ADS  Google Scholar 

  57. T. Pereg-Bernea et al., Phys. Rev. B 69, 184513 (2004)

    Article  ADS  Google Scholar 

  58. D.M. Broun et al., Phys. Rev. Lett. 99, 237003 (2007)

    Article  ADS  Google Scholar 

  59. S.L. Cooper et al., Phys. Rev. B 47, 8233 (1993)

    Article  ADS  Google Scholar 

  60. S.F. Lee et al., Phys. Rev. Lett. 77, 735 (1996)

    Article  ADS  Google Scholar 

  61. A. Paramekanti, M. Randeria, T.V. Ramakrishnan, S.S. Mandal, Phys. Rev. B 62, 6786 (2000)

    Article  ADS  Google Scholar 

  62. A.C. Durst, P.A. Lee, Phys. Rev. B 62, 1270 (2000)

    Article  ADS  Google Scholar 

  63. A. Paramekanti, M. Randeria, Phys. Rev. B 66, 214517 (2002)

    Article  ADS  Google Scholar 

  64. C.P. Nave, D.A. Ivanov, P.A. Lee, Phys. Rev. B 73, 104502 (2006)

    Article  ADS  Google Scholar 

  65. A.V. Balatsky, I. Vekhter, J-X. Zhu, Rev. Mod. Phys. 78, 373 (2006)

    Google Scholar 

  66. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    Article  ADS  Google Scholar 

  67. S.H. Pan et al., Nature 413, 282 (2001)

    Article  ADS  Google Scholar 

  68. K. McElroy et al., Phys. Rev. Lett. 94, 197005 (2005)

    Article  ADS  Google Scholar 

  69. M. Vershinin et al., Science 303, 1995 (2004)

    Article  ADS  Google Scholar 

  70. K. McElroy et al., Science 309, 1048 (2005)

    Article  ADS  Google Scholar 

  71. A.N. Pasupathy et al., Science 320, 196 (2008)

    Article  ADS  Google Scholar 

  72. X.J. Zhou et al., Phys. Rev. Lett. 92, 187001 (2004)

    Article  ADS  Google Scholar 

  73. K. M. Shen et al., Science 307, 901 (2005)

    Article  ADS  Google Scholar 

  74. W.A. Atkinson, P.J. Hirschfeld, A.H. MacDonald, Phys. Rev. Lett. 85, 3922 (2000)

    Article  ADS  Google Scholar 

  75. A. Ghosal, M. Randeria, N. Trivedi, Phys. Rev. B 63, 020505 (2000)

    Article  Google Scholar 

  76. T.S. Nunner et al., Phys. Rev. Lett. 95, 177003 (2005)

    Article  ADS  Google Scholar 

  77. Z. Wang et al., Phys. Rev. B 65, 064509 (2002)

    Article  ADS  Google Scholar 

  78. Q-H. Wang et al., Phys. Rev. B 73, 092507 (2006)

    Google Scholar 

  79. H. Tsuchiura et al., Phys. Rev. Lett. 84, 3165 (2000)

    Article  ADS  Google Scholar 

  80. S. Pathak, V. B. Shenoy, M. Randeria, N. Trivedi, Phys. Rev. Lett. 102, 027002 (2009)

    Article  ADS  Google Scholar 

  81. T. Giamarchi, C. Lhuillier, Phys. Rev. B 43, 12943 (1991)

    Article  ADS  Google Scholar 

  82. A. Himeda, M. Ogata, Phys. Rev. B 60, R9935 (1999)

    Article  ADS  Google Scholar 

  83. T.K. Lee, C-M. Ho, N. Nagaosa, Phys. Rev. Lett. 90, 067001 (2003)

    Google Scholar 

  84. C.T. Shih et al., Phys. Rev. Lett. 92, 227002 (2004)

    Article  ADS  Google Scholar 

  85. G. Kotliar et al., Phys. Rev. Lett. 87, 186401 (2001)

    Article  ADS  Google Scholar 

  86. D. Senechal et al., Phys. Rev. Lett. 94, 156404 (2005)

    Article  ADS  Google Scholar 

  87. E. Pavarini et al., Phys. Rev. Lett. 87, 047003 (2001)

    Article  ADS  Google Scholar 

  88. V. Emery, S. Kivelson, Nature 374, 434 (1995)

    Article  ADS  Google Scholar 

  89. M. Randeria et al., Phys. Rev. Lett. 69, 2001 (1992)

    Article  ADS  Google Scholar 

  90. N. Trivedi, M. Randeria, Phys. Rev. Lett. 75, 312 (1995)

    Article  ADS  Google Scholar 

  91. L. Li et al., Phys. Rev. B 81, 054510 (2010)

    Article  ADS  Google Scholar 

  92. Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  93. T. Timusk, B.W. Statt, Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  94. L. Taillefer, Ann. Rev. Cond. Mat. Phys. 1, 51 (2010)

    ADS  Google Scholar 

  95. C.M. Varma et al., Phys. Rev. Lett. 63, 1996 (1989)

    Article  ADS  Google Scholar 

  96. C.M. Varma, Phys. Rev. B 73, 155113 (2006)

    Article  ADS  Google Scholar 

  97. The landscape of the Hubbard model by S. Sachdev, TASI and Chandrasekhar Lectures, arXiv: 1012.0299

    Google Scholar 

  98. K-Y. Yang, T. M. Rice, F-C. Zhang, Phys. Rev. B 73, 174501 (2006)

    Google Scholar 

  99. P. W. Anderson, Int. J. Mod. Phys. B 25, 1 (2011)

    Article  ADS  MATH  Google Scholar 

  100. P. A. Casey, P. W. Anderson, Phys. Rev. Lett. 106, 097002 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Arun Paramekanti, Juan Carlos Campuzano, Seamus Davis, Arti Garg, and Fu-Chun Zhang for many discussions, and acknowledge inspiring interactions with P. W. Anderson. Our work was supported by NSF DMR-1006532 and DOE DE-SC0005035 (MR), DARPA QuEST and DARPA OLE (RS), and NSF DMR-0907275 (NT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Randeria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Randeria, M., Sensarma, R., Trivedi, N. (2012). Projected Wavefunctions and High T c Superconductivity in Doped Mott Insulators. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21831-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21831-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21830-9

  • Online ISBN: 978-3-642-21831-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics