Skip to main content

Two-Particle-Self-Consistent Approach for the Hubbard Model

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 171))

Abstract

Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the random phase approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin–Wagner theorem. The two-particle-self-consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local-charge sum-rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. The internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: (a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength and (b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the contribution of Honerkamp in this volume.

  2. 2.

    Modifications have been proposed in zero dimension to use as impurity solver for DMFT [26].

  3. 3.

    In other references we often use iq n instead of iω n to denote the Matsubara frequency corresponding to the wave vector q.

  4. 4.

    The meaning of the superscripts differs from that in [7]. Superscripts \(\left (2\right )\left (1\right )\)here correspond, respectively, to \(\left (1\right )\left (0\right )\)in [7].

  5. 5.

    For the conductivity with vertex corrections [36], the f-sum rule with n kσobtained from G (2)is satisfied.

  6. 6.

    There is a misprint of a factor of 2 in [7]. It is corrected in [28].

  7. 7.

    In the Hubbard model the Fock term cancels with the same-spin Hartree term.

  8. 8.

    Appendix B of [7].

  9. 9.

    FLEX does not satisfy this consistency requirement. See Appendix E of [7]. In fact double-occupancy obtained from ΣGcan even become negative [55].

  10. 10.

    (See [7], Appendix E).

  11. 11.

    To remind ourselves of this, we may also adopt an additional vertical matrix notation convention and write (13.37) as \(\frac{\delta G} {\delta \phi } = {G}_{{}^{}}G + G\left [\frac{\frac{\delta \Sigma }{\delta G}} {\frac{\delta G}{\delta \phi }}\right ]G\).

  12. 12.

    See footnote (14) of [20] for a discussion of the choice of limit 1 + versus 1 − .

  13. 13.

    For n > 1, all particle occupation numbers must be replaced by hole occupation numbers.

  14. 14.

    Note also the following study from zero temperature [62].

  15. 15.

    This formula is similar to one that appeared in [63].

  16. 16.

    For comparisons with paramagnon theory see [65].

  17. 17.

    See also conclusion of [29].

  18. 18.

    Such tails tend to disappear in more recent laser ARPES measurements on hole-doped compounds [99].

  19. 19.

    See contribution of Randeria in this volume.

  20. 20.

    See contribution of Sénéchal in this volume.

  21. 21.

    For a pseudogap in the single-particle spectral weight, it is important not to assume a Migdal theorem [138139], and include vertex corrections [7].

  22. 22.

    See contributions of Vollhardt, Sénéchal, Potthoff and Jarrell in this volume.

References

  1. J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963)

    Article  ADS  Google Scholar 

  2. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963)

    Article  ADS  MATH  Google Scholar 

  3. M.C. Gutzwiller, Phys. Rev. Lett. 10(5), 159 (1963)

    Article  ADS  Google Scholar 

  4. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20(25), 1445 (1968)

    Article  ADS  Google Scholar 

  5. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62(3), 324 (1989)

    Article  ADS  Google Scholar 

  6. Y. Vilk, L. Chen, A.-M.S. Tremblay, Phys. Rev. B 49, 13267 (1994)

    Article  ADS  Google Scholar 

  7. Y. Vilk, A.-M.S. Tremblay, J. Phys I (France) 7, 1309 (1997)

    Google Scholar 

  8. G.D. Mahan, Many-Particle Physics(Kluwer, New-York, 2000)

    Google Scholar 

  9. N. Mott, Proc. Phys. Soc. A 62, 416 (1949)

    Article  ADS  Google Scholar 

  10. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17(22), 1133 (1966)

    Article  ADS  Google Scholar 

  11. P.C. Hohenberg, Phys. Rev. 158(2), 383 (1967)

    Article  ADS  Google Scholar 

  12. A. Avella, F. Mancini, Adv. Phys. 53(5–6) (2004)

    Google Scholar 

  13. A. Avella, F. Mancini, Condens. Matter Phys. 9(3), 569 (2006)

    Google Scholar 

  14. A. Avella, F. Mancini, Euro. Phys. J. B 36(1), 37 (2003)

    Article  ADS  Google Scholar 

  15. N. Bickers, D. Scalapino, Ann. Phys. (USA) 193(1), 206 (1989)

    Google Scholar 

  16. N. Bickers, D. Scalapino, Phys. Rev. Lett. 62, 961 (1989)

    Article  ADS  Google Scholar 

  17. T. Moriya, K. Ueda, Rep. Prog. Phys. 66(8), 1299 (2003)

    Article  ADS  Google Scholar 

  18. G.G. Lonzarich, L. Taillefer, J. Phys. C 18, 4339 (1985)

    Article  ADS  Google Scholar 

  19. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism(Springer, Heidelberg, 1985)

    Google Scholar 

  20. S. Allen, A.-M.S. Tremblay, Y.M. Vilk, in Theoretical Methods for Strongly Correlated Electrons, CRM Series in Mathematical Physics, (Springer, New York, 2003), p. 341–355, ed. by D. Sénéchal, C. Bourbonnais, A.M. Tremblay (2003)

    Google Scholar 

  21. I. Dzyaloshinskii, Sov. Phys. JETP 66, 848 (1987)

    Google Scholar 

  22. H.J. Schulz, Europhys. Lett. 4, 609 (1987)

    Article  ADS  Google Scholar 

  23. P. Lederer, G. Montambaux, D. Poilblanc, J. Phys. 48, 1613 (1987)

    Article  Google Scholar 

  24. C. Honerkamp, M. Salmhofer, Phys. Rev. Lett. 87, 187004 (2001)

    Article  ADS  Google Scholar 

  25. M.A. Tusch, Y.H. Szczech, D.E. Logan, Phys. Rev. B 53(9), 5505 (1996)

    Article  ADS  Google Scholar 

  26. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  27. H. Nélisse, C. Bourbonnais, H. Touchette, Y. Vilk, A.-M.S. Tremblay, Euro. Phys. J. B (France) 12, 351 (1999)

    Google Scholar 

  28. A.M. Daré, L. Raymond, G. Albinet, A.-M.S. Tremblay, Phys. Rev. B 76(6), 064402 (2007)

    Article  ADS  Google Scholar 

  29. A.-M.S. Tremblay, B. Kyung, D. Sénéchal, Low Temp. Phys. 32(4–5), 424 (2006)

    Article  ADS  Google Scholar 

  30. G. Baym, Phys. Rev. 127, 1391 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. N.E. Bickers, S.R. White, Phys. Rev. B 43(10), 8044 (1991)

    Article  ADS  Google Scholar 

  32. V. Janis, Condens. Matter Phys. 9, 499 (2006)

    Google Scholar 

  33. K.S. Singwi, M.P Tosi, Solid State Physics, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic, New York, 1981)

    Google Scholar 

  34. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  ADS  Google Scholar 

  35. M.R. Hedeyati, G. Vignale, Phys. Rev. B 40, 9044 (1989)

    Article  ADS  Google Scholar 

  36. D. Bergeron, B. Kyung, V. Hankevych, A.-M.S. Tremblay, arXiv:1101.4037 and D. Bergeron, PhD thesis, Université de Sherbrooke (2011) Phys. Rev. B, in press

    Google Scholar 

  37. L. Chen, C. Bourbonnais, T. Li, A.-M.S. Tremblay, Phys. Rev. Lett. 66, 369 (1991)

    Article  ADS  Google Scholar 

  38. A.M. Daré, Y. Vilk, A.-M.S. Tremblay, Phys. Rev. B 53, 14236 (1996)

    Article  ADS  Google Scholar 

  39. T. Moriya, Y. Takahashi, K. Ueda, J. Phys. Soc. Jpn. 59, 2905 (1990)

    Article  ADS  Google Scholar 

  40. S. Roy, A.-M.S. Tremblay, EPL (Europhys. Lett.) 84(3), 37013 (6pp) (2008)

    Google Scholar 

  41. Y. Vilk, A.-M.S. Tremblay, Europhys. Lett. 33, 159 (1996)

    Article  ADS  Google Scholar 

  42. B. Kyung, J.S. Landry, A.-M.S. Tremblay, Phys. Rev. B 68, 174502 (2003)

    Article  ADS  Google Scholar 

  43. A. Veilleux, Master’s thesis, Université de Sherbrooke (1994)

    Google Scholar 

  44. A. Veilleux, A.M. Daré, L. Chen, Y. Vilk, A.-M.S. Tremblay, Phys. Rev. B 52, 16255 (1995)

    Article  ADS  Google Scholar 

  45. B. Kyung, J. Landry, D. Poulin, A.-M.S. Tremblay, Phys. Rev. Lett. 90, 099702 (2003)

    Article  ADS  Google Scholar 

  46. N. Menyhard, J. Solyom, J. Low Temp. Phys. 12, 529 (1973)

    Article  ADS  Google Scholar 

  47. C. Bourbonnais, Mol. Cryst. Liq. Cryst. 119, 11 (1985)

    Article  Google Scholar 

  48. D. Zanchi, Euophys. Lett. 55, 376 (2001)

    Article  ADS  Google Scholar 

  49. S. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y. Vilk, A.-M.S. Tremblay, Phys. Rev. B 61, 7887 (2000)

    Article  ADS  Google Scholar 

  50. B. Kyung, S. Allen, A.-M.S. Tremblay, Phys. Rev. B 64, 075116 (2001)

    Article  ADS  Google Scholar 

  51. J.J. Deisz, D.W. Hess, J.W. Serene, Phys. Rev. Lett. 76(8), 1312 (1996)

    Article  ADS  Google Scholar 

  52. P. Monthoux, Phys. Rev. B 68(6), 064408 (2003)

    Article  ADS  Google Scholar 

  53. L. Hedin, J. Phys. Condens. Matter 11(42), R489 (1999)

    Article  ADS  Google Scholar 

  54. G. Mahan, Many-Particle Physics, 3rd edn., Sect. 6.4.4 (Kluwer, New York, 2000)

    Google Scholar 

  55. R. Arita, S. Onoda, K. Kuroki, H. Aoki, J. Phys. Soc. Jpn. 69(3), 785 (2000)

    Article  ADS  Google Scholar 

  56. N.F. Berk, J.R. Schrieffer, Phys. Rev. Lett. 17(8), 433 (1966)

    Article  ADS  Google Scholar 

  57. S. Allen, A.-M.S. Tremblay, Phys. Rev. B 64, 075115 (2001)

    Article  ADS  Google Scholar 

  58. G. Baym, L.P. Kadanoff, Phys. Rev. 124(2), 287 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. P.C. Martin, J. Schwinger, Phys. Rev. 115(6), 1342 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. L. Kadanoff, G. Baym, Quantum Statistical Mechanics(Benjamin, Menlo Park, 1962)

    MATH  Google Scholar 

  61. Y. Vilk, A.-M.S. Tremblay, J. Phys. Chem. Solid (UK) 56(12), 1769 (1995)

    Google Scholar 

  62. K. Borejsza, N. Dupuis, Phys. Rev. B 69(8), 085119 (2004)

    Article  ADS  Google Scholar 

  63. P.A. Lee, T.M. Rice, P.W. Anderson, Phys. Rev. Lett. 31(7), 462 (1973)

    Article  ADS  Google Scholar 

  64. Y.M. Vilk, Phys. Rev. B 55(6), 3870 (1997)

    Article  ADS  Google Scholar 

  65. T. Saikawa, A. Ferraz, Euro. Phys. J. B Condens. Matter Complex Syst. 20, 65 (2001)

    Google Scholar 

  66. J.R. Schrieffer, X.G. Wen, S.C. Zhang, Phys. Rev. B 39(16), 11663 (1989)

    Article  ADS  Google Scholar 

  67. B. Davoudi, S.R. Hassan, A.-M.S. Tremblay, Phys. Rev. B 77(21), 214408 (2008)

    Article  ADS  Google Scholar 

  68. T. Timusk, B. Statt, Rep. Progr. Phys. 62(1), 61 (1999)

    Article  ADS  Google Scholar 

  69. M. Norman, D. Pines, C. Kallin, cond-mat/050731, Adv. Phys. 54(8), 715–733 (2005)

    Article  ADS  Google Scholar 

  70. O. Andersen, A. Liechtenstein, O. Jepsen, F. Paulsen, J. Phys. Chem. Solid 56, 1573 (1995)

    Article  ADS  Google Scholar 

  71. E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, O.K. Andersen, Phys. Rev. Lett. 87(4), 047003 (2001)

    Article  ADS  Google Scholar 

  72. D.C. Peets, D.G. Hawthorn, K.M. Shen, Y.J. Kim, D.S. Ellis, H. Zhang, S. Komiya, Y. Ando, G.A. Sawatzky, R. Liang, D.A. Bonn, W.N. Hardy, Phys. Rev. Lett. 103(8), 087402 (2009)

    Article  ADS  Google Scholar 

  73. A. Liebsch, Phys. Rev. B 81(23), 235133 (2010)

    Article  ADS  Google Scholar 

  74. P. Phillips, M. Jarrell, Phys. Rev. Lett., vol. 105, 199701 (2010)

    Article  ADS  Google Scholar 

  75. A. Shekhter, C.M. Varma, Phys. Rev. B 80(21), 214501 (2009)

    Article  ADS  Google Scholar 

  76. A. Macridin, T.A. Maier, M.S. Jarrell, G. Sawatzky, Phys. Rev. B 71, 134527 (2005)

    Article  ADS  Google Scholar 

  77. W. Hanke, M. Kiesel, M. Aichhorn, S. Brehm, E. Arrigoni, The European Physical Journal - Special Topics, 188, p.15 (2010)

    Google Scholar 

  78. C.T. Chen, F. Sette, Y. Ma, M.S. Hybertsen, E.B. Stechel, W.M.C. Foulkes, M. Schulter, S.W. Cheong, A.S. Cooper, L.W. Rupp, B. Batlogg, Y.L. Soo, Z.H. Ming, A. Krol, Y.H. Kao, Phys. Rev. Lett. 66(1), 104 (1991)

    Article  ADS  Google Scholar 

  79. F. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  ADS  Google Scholar 

  80. D. Sénéchal, P.L. Lavertu, M.A. Marois, A.-M.S. Tremblay, Phys. Rev. Lett. 94, 156404 (2005)

    Article  ADS  Google Scholar 

  81. T.A. Maier, M. Jarrell, T.C. Schulthess, P.R.C. Kent, J.B. White, Phys. Rev. Lett. 95(23), 237001 (2005)

    Article  ADS  Google Scholar 

  82. M. Aichhorn, E. Arrigoni, M. Potthoff, W. Hanke, Phys. Rev. B 74(23), 235117 (2006)

    Article  ADS  Google Scholar 

  83. M. Aichhorn, E. Arrigoni, Z.B. Huang, W. Hanke, Phys. Rev. Lett. 99(25), 257002 (2007)

    Article  ADS  Google Scholar 

  84. K. Haule, G. Kotliar, Phys. Rev. B (Condens. Matter Mater. Phys.) 76(10), 104509 (2007)

    Google Scholar 

  85. S.S. Kancharla, B. Kyung, D. Sénéchal, M. Civelli, M. Capone, G. Kotliar, A.-M.S. Tremblay, Phys. Rev. B (Condens. Matter Mater. Phys.) 77(18), 184516 (2008)

    Google Scholar 

  86. S. Massidda, N. Hamada, J. Yu, A. Freeman, Phys. C Supercond. 157(3), 571 (1989)

    Article  ADS  Google Scholar 

  87. G.q. Zheng, T. Sato, Y. Kitaoka, M. Fujita, K. Yamada, Phys. Rev. Lett. 90(19), 197005 (2003)

    Google Scholar 

  88. N.P. Armitage, P. Fournier, R.L. Greene, Rev. Mod. Phys. 82(3), 2421 (2010)

    Article  ADS  Google Scholar 

  89. Y. Onose, Y. Taguchi, K. Ishizaka, Y. Tokura, Phys. Rev. Lett. 87, 217001 (2001)

    Article  ADS  Google Scholar 

  90. N. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002)

    Article  ADS  Google Scholar 

  91. E. Motoyama, G. Yu, I. Vishik, O. Vajk, P. Mang, M. Greven, Nature 445, 186 (2007)

    Article  ADS  Google Scholar 

  92. D. Sénéchal, A.-M.S. Tremblay, Phys. Rev. Lett. 92, 126401 (2004)

    Article  ADS  Google Scholar 

  93. V. Hankevych, B. Kyung, A.M. Daré, D. Sénéchal, A.-M.S. Tremblay, J. Phys. Chem. Solid 67, 189 (2006)

    Article  ADS  Google Scholar 

  94. G. Sordi, K. Haule, A.-M.S. Tremblay, Phys. Rev. Lett. 104(22), 226402 (2010)

    Article  ADS  Google Scholar 

  95. Y. Tokura, S. Koshihara, T. Arima, H. Takagi, S. Ishibashi, T. Ido, S. Uchida, Phys. Rev. B 41(16), 11657 (1990)

    Article  ADS  Google Scholar 

  96. G. Kotliar, J. Liu, Phys. Rev. Lett. 61, 1784 (1988)

    Article  ADS  Google Scholar 

  97. B. Kyung, V. Hankevych, A.M. Daré, A.-M.S. Tremblay, Phys. Rev. Lett. 93, 147004 (2004)

    Article  ADS  Google Scholar 

  98. H. Matsui, K. Terashima, T. Sato, T. Takahashi, S.C. Wang, H.B. Yang, H. Ding, T. Uefuji, K. Yamada, Phys. Rev. Lett. 94, 047005 (2005)

    Article  ADS  Google Scholar 

  99. J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Phys. Rev. Lett. 96(1), 017005 (2006)

    Article  ADS  Google Scholar 

  100. C. Bourbonnais, A. Sedeki, Phys. Rev. B 80(8), 085105 (2009) and arXiv:1108.1842

    Google Scholar 

  101. Q. Yuan, F. Yuan, C.S. Ting, Phys. Rev. B 72(5), 054504 (2005)

    Article  ADS  Google Scholar 

  102. H.K.K.G. Weber, C., Nat. Phys. 6(8), 574 (2010)

    Google Scholar 

  103. H. Park, K. Haule, G. Kotliar, Phys. Rev. Lett. 101(18), 186403 (2008)

    Article  ADS  Google Scholar 

  104. T.A. Sedrakyan, A.V. Chubukov, Phys. Rev. B 81(17), 174536 (2010)

    Article  ADS  Google Scholar 

  105. S.V. Borisenko, A.A. Kordyuk, A.N. Yaresko, V.B. Zabolotnyy, D.S. Inosov, R. Schuster, B. Büchner, R. Weber, R. Follath, L. Patthey, H. Berger, Phys. Rev. Lett. 100(19), 196402 (2008)

    Article  ADS  Google Scholar 

  106. W. Kohn, J.M. Luttinger, Phys. Rev. Lett. 15(12), 524 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  107. M. Beal-Monod, C. Bourbonnais, V. Emery, Phys. Rev. B 34, 7716 (1986)

    Article  ADS  Google Scholar 

  108. D. Scalapino, J. Loh, E., J. Hirsch, Phys. Rev. B 34, 8190 (1986)

    Google Scholar 

  109. K. Miyake, S. Schmitt-Rink, C. Varma, Phys. Rev. B 34, 6554 (1986)

    Article  ADS  Google Scholar 

  110. S.R. Hassan, B. Davoudi, B. Kyung, A.-M.S. Tremblay, Phys. Rev. B 77(9), 094501 (2008)

    Article  ADS  Google Scholar 

  111. C.H. Pao, N.E. Bickers, Phys. Rev. B 51(22), 16310 (1995)

    Article  ADS  Google Scholar 

  112. V. Hankevych, B. Kyung, A.-M.S. Tremblay, Phys. Rev. B 68, 214405 (2003)

    Article  ADS  Google Scholar 

  113. D. Scalapino, Phys. Rep. 250(6), 329 (1995)

    Article  ADS  Google Scholar 

  114. T. Giamarchi, C. Lhuillier, Phys. Rev. B 43(16), 12943 (1991)

    Article  ADS  Google Scholar 

  115. A. Paramekanti, M. Randeria, N. Trivedi, Phys. Rev. B 70(5), 054504 (2004)

    Article  ADS  Google Scholar 

  116. R.T. Honerkamp, Physica C: Superconductivity and its Applications 388–389, 11 (2003)

    Article  Google Scholar 

  117. S. Raghu, S.A. Kivelson, D.J. Scalapino, Phys. Rev. B 81(22), 224505 (2010)

    Article  ADS  Google Scholar 

  118. T.A. Maier, D. Poilblanc, D.J. Scalapino, Phys. Rev. Lett. 100(23), 237001 (2008)

    Article  ADS  Google Scholar 

  119. B. Kyung, D. Sénéchal, A.-M.S. Tremblay, Phys. Rev. B (Condens. Matter Mater. Phys.) 80(20), 205109 (2009)

    Google Scholar 

  120. T. Aimi, M. Imada, J. Phys. Soc. Jpn. 76(11), 113708 (2007)

    Article  ADS  Google Scholar 

  121. A. Auerbach, D.P. Arovas, Phys. Rev. Lett. 61(5), 617 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  122. M. Takahashi, Phys. Rev. Lett. 58(2), 168 (1987)

    Article  ADS  Google Scholar 

  123. P. Pfeuty, G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena(Wiley, London, 1977), p. 103

    Google Scholar 

  124. A.M. Daré, G. Albinet, Phys. Rev. B 61(7), 4567 (2000)

    Article  ADS  Google Scholar 

  125. H.v. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79(3), 1015 (2007)

    Google Scholar 

  126. S. Roy, Le modèle de Hubbard bidimensionnel à faible couplage: thermodynamique et phénomènes critiques. Ph.D. thesis, Université de Sherbrooke (2008)

    Google Scholar 

  127. A. Kopp, S. Chakravarty, Nat. Phys. 1, 53 (2005)

    Article  Google Scholar 

  128. B. Davoudi, A.-M.S. Tremblay, Phys. Rev. B 74(3), 035113 (2006)

    Article  ADS  Google Scholar 

  129. B. Davoudi, A.-M.S. Tremblay, Phys. Rev. B 76(8), 085115 (2007)

    Article  ADS  Google Scholar 

  130. J.M. Luttinger, J.C. Ward, Phys. Rev. 118(5), 1417 (1960)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  131. S. Roy, Calculs thermodynamiques et leur uniformité pour le modèle de Hubbard bi-dimensionnel. Master’s thesis, Université de Sherbrooke (2002)

    Google Scholar 

  132. T. Paiva, R.T. Scalettar, C. Huscroft, A.K. McMahan, Phys. Rev. B 63, 125116 (2001)

    Article  ADS  Google Scholar 

  133. F. Werner, O. Parcollet, A. Georges, S.R. Hassan, Phys. Rev. Lett. 95(5), 056401 (2005)

    Article  ADS  Google Scholar 

  134. R.A. Cooper, Y. Wang, B. Vignolle, O.J. Lipscombe, S.M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, N.E. Hussey, Science 323(5914), 603 (2009)

    Article  ADS  Google Scholar 

  135. N. Doiron-Leyraud, P. Auban-Senzier, S. René de Cotret, C. Bourbonnais, D. Jérome, K. Bechgaard, L. Taillefer, Phys. Rev. B 80(21), 214531 (2009)

    Article  ADS  Google Scholar 

  136. S. Allen, Approximation auto-cohérente à deux particules, pseudogap et supraconductivité dans le modèle de Hubbard attractif. Ph.D. thesis, Université de Sherbrooke (2000)

    Google Scholar 

  137. S. Verga, R.J. Gooding, F. Marsiglio, Phys. Rev. B 71(15), 155111 (2005)

    Article  ADS  Google Scholar 

  138. S. Fujimoto, J. Phys. Soc. Jpn. 71(5), 1230 (2002)

    Article  ADS  Google Scholar 

  139. Y. Yanase, J. Phys. Soc. Jpn. 73(4), 1000 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  140. S. Allen, H. Touchette, S. Moukouri, Y.M. Vilk, A.-M.S. Tremblay, Phys. Rev. Lett. 83(20), 4128 (1999)

    Article  ADS  Google Scholar 

  141. D. Rohe, W. Metzner, Phys. Rev. B 63(22), 224509 (2001)

    Article  ADS  Google Scholar 

  142. M. Randeria, N. Trivedi, A. Moreo, R.T. Scalettar, Phys. Rev. Lett. 69(13), 2001 (1992)

    Article  ADS  Google Scholar 

  143. A. Moreo, D.J. Scalapino, S.R. White, Phys. Rev. B 45(13), 7544 (1992)

    Article  ADS  Google Scholar 

  144. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  145. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78(3), 865 (2006)

    Article  ADS  Google Scholar 

  146. A.M. Daré, Unpublished

    Google Scholar 

  147. C.J. Halboth, W. Metzner, Phys. Rev. Lett. 85(24), 5162 (2000)

    Article  ADS  Google Scholar 

  148. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics(Prentice Hall, NJ, 1963)

    MATH  Google Scholar 

  149. T. Saso, J. Phys. Soc. Jpn. 69(12), 3912 (2000)

    Article  ADS  Google Scholar 

  150. R. Frésard, A. Ruckenstein, Phys. B Condens. Matter 281–282, 890 (2000)

    Article  Google Scholar 

  151. C. Honerkamp, M. Salmhofer, N. Furukawa, T.M. Rice, Phys. Rev. B 63(3), 035109 (2001)

    Article  ADS  Google Scholar 

  152. C. Honerkamp, M. Salmhofer, Prog. Theor. Phys. 105, 1 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

I am indebted to Yury Vilk who was at the origin of most of the ideas on TPSC and to Bumsoo Kyung who has collaborated on numerous TPSC project. In addition, many students, postdocs and colleagues over the years have worked extremely hard and made use of their creative powers and originality to extend and apply this approach to a large number of problems. Students and postdocs include in chronological order Liang Chen, Alain Veilleux, Anne-Marie Daré, Steve Allen, Hugo Touchette, Samuel Moukouri, Bumsoo Kyung, François Lemay, David Poulin, Jean-Sébastien Landry, Vasyl Hankevych, Bahman Davoudi, Syed Raghib Hassan, Sébastien Roy, Charles Brillon and Dominic Bergeron. I am also indebted to my colleagues David Sénéchal, Claude Bourbonnais, and collaborators Gilbert Albinet and Anne-Marie Daré. I am grateful to D. Sénéchal and D. Bergeron for critical comments on this work. This work was partially supported by NSERC (Canada) and by the Tier I Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André-Marie S. Tremblay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tremblay, AM.S. (2012). Two-Particle-Self-Consistent Approach for the Hubbard Model. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21831-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21831-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21830-9

  • Online ISBN: 978-3-642-21831-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics