Skip to main content

Classification Model for Data Streams Based on Similarity

  • Conference paper
Modern Approaches in Applied Intelligence (IEA/AIE 2011)

Abstract

Mining data streams is a field of study that poses new challenges. This research delves into the study of applying different techniques of classification of data streams, and carries out a comparative analysis with a proposal based on similarity; introducing a new form of management of representative data models and policies of insertion and removal, advancing also in the design of appropriate estimators to improve classification performance and updating of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orriols-puig, A., Casillas, J., Bernado, E.: Fuzzy-UCS: A Michigan-style Learning Fuzzy-Classifier System for Supervised Learning. Transactions on Evolutionary Computation, 1–23 (2008)

    Google Scholar 

  2. Polikar, R., Udpa, L., Udpa, S.S., Honavar, V.: LEARN ++: an Incremental Learning Algorithm For Multilayer Perceptron Networks. IEEE Transactions on System, Man and Cybernetics (C), Special Issue on Knowledge Management, 3414–3417 (2000)

    Google Scholar 

  3. Ferrer, F.J., Aguilar, J.S., Riquelme, J.C.: Incremental Rule Learning and Border Examples Selection from Numerical Data Streams. Journal of Universal Computer Science, 1426–1439 (2005)

    Google Scholar 

  4. Widmer, G.: Combining Robustness and Flexibility in Learning Drifting Concepts. Machine Learning, 1–11 (1994)

    Google Scholar 

  5. Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1(3), 317–354 (1986)

    Google Scholar 

  6. Watanabe, L., Elio, R.: Guiding Constructive Induction for Incremental Learning from Examples. Knowledge Acquisition, 293–296 (1987)

    Google Scholar 

  7. Kolter, J.Z., Maloof, M.A.: Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift. In: Proceedings of the Third International IEEE Conference on Data Mining, pp. 123–130 (2003)

    Google Scholar 

  8. Domingos, P., Hulten, G.: Mining High-Speed Data Streams. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2000)

    Google Scholar 

  9. Jin, R., Agrawal, G.: Efficient Decision Tree Construction on Streaming Data. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 571 – 576(2003)

    Google Scholar 

  10. Ramos-jim, G., Jos, R.M.-b., Avila, C.: IADEM-0: Un Nuevo Algoritmo Incremental, pp. 91–98 (2004)

    Google Scholar 

  11. Beringer, J., Hullermeier, E.: Efficient Instance-Based Learning on Data Streams. Intelligent Data Analysis, 1–43 (2007)

    Google Scholar 

  12. Salganicoff, M.: Tolerating Concept and Sampling Shift in Lazy Learning Using Prediction Error Context Switching. Artificial Intelligence Review, 133–155 (1997)

    Google Scholar 

  13. Klinkenberg, R., Joachims, T.: Detecting Concept Drift with Support Vector Machines. In: Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pp. 487–494 (2000)

    Google Scholar 

  14. Mukherjee, K.: Application of the Gabriel Graph to Instance Based Learning Algorithms. PhD thesis, Simon Fraser University (2004)

    Google Scholar 

  15. Aha, D.W., Kibler, D., Albert, M.K.: Instance-Based Learning Algorithms. Machine Learning 66, 37–66 (1991)

    Google Scholar 

  16. Randall Wilson, D., Martinez, T.R.: Improved Heterogeneous Distance Functions. Artificial Intelligence 6, 1–34 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  18. Gama, J., Medas, P., Rocha, R.: Forest Trees for On-line Data. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 632–636 (2004)

    Google Scholar 

  19. Gama, J., Rocha, R., Medas, P.: Accurate Decision Trees for Mining High-speed Data Streams. In: Proc. SIGKDD, pp. 523–528 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mena Torres, D., Aguilar Ruiz, J., Rodríguez Sarabia, Y. (2011). Classification Model for Data Streams Based on Similarity. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C., Varshney, P.K., Ali, M. (eds) Modern Approaches in Applied Intelligence. IEA/AIE 2011. Lecture Notes in Computer Science(), vol 6703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21822-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21822-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21821-7

  • Online ISBN: 978-3-642-21822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics