Advertisement

Developmental Trend Derived from Modules of Wnt Signaling Pathways

  • Losiana Nayak
  • Rajat K. De
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)

Abstract

In this paper, we deal with the idea of creating a developmental trend from Wnt signaling pathways of different species. Wnt signaling pathway is involved in many crucial biological processes including from early embryonic development to stem cell management at later stages. The pathway varies in topology and size for each species that gets reflected in its modules. A comparison among species-specific pathways, taking into account the modules and pathway structure (in terms of nodes and edges) will throw light on crucial turning points in the development of Wnt signaling pathway. Hence, 31 species-specific Wnt signaling pathways have been modularized by the Modularization algorithm already developed by the authors. The modules were compared among themselves to find the trend of development. The trend established conserved modules among these pathways.

Keywords

Modularization algorithm Evolution Phylogenetic tree construction Computational Phylogenetics 

References

  1. 1.
    Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny. J. R. Soc. Interface 7, 1341–1354 (2010)CrossRefGoogle Scholar
  2. 2.
    Nayak, L., De, R.K.: An algorithm for modularization of MAPK and calcium signaling pathways: Comparative analysis among different species. J. Biomed. Inform. 40, 726–749 (2007)CrossRefGoogle Scholar
  3. 3.
    Cadigan, K.M., Liu, Y.I.: Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395–402 (2006)CrossRefGoogle Scholar
  4. 4.
    Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., et al.: Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003)CrossRefGoogle Scholar
  5. 5.
    Logan, C.Y., Nusse, R.: The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004)CrossRefGoogle Scholar
  6. 6.
    Pinto, D., Clevers, H.: Wnt, stem cells and cancer in the intestine. Biol. Cell 97, 185–196 (2005)CrossRefGoogle Scholar
  7. 7.
    Lowry, W.E., Blanpain, C., Nowak, J.A., Guasch, G., Lewis, L., et al.: Defining the impact of β-catenin/tcf transactivation on epithelial stem cells. Genes and Dev. 19, 1596–1611 (2005)CrossRefGoogle Scholar
  8. 8.
    Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C.: A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003)CrossRefGoogle Scholar
  9. 9.
    Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)CrossRefGoogle Scholar
  10. 10.
    Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Losiana Nayak
    • 1
  • Rajat K. De
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations