Advertisement

Neuro-fuzzy Methodology for Selecting Genes Mediating Lung Cancer

  • Rajat K. De
  • Anupam Ghosh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)

Abstract

In this article, we describe neuro-fuzzy models under supervised and unsupervised learning for selecting a few possible genes mediating a disease. The methodology involves grouping of genes based on correlation coefficient using microarray gene expression patterns. The most important group is selected using existing neuro-fuzzy systems [1,2,3,4,5]. Finally, a few possible genes are selected from the most important group using the aforesaid neuro-fuzzy systems. The effectiveness of the methodology has been demonstrated on lung cancer gene expression data sets. The superiority of the methodology has been established with four existing gene selection methods like SAM, SNR, NA and BR. The enrichment of each gene ontology category of the resulting genes was calculated by its P-value. The genes output the low P-value, and indicate that they are biologically significant. According to the methodology, we have found more true positive genes than the other existing algorithms.

Keywords

Feature Selection Gene Selection Microarray Gene Expression Data Informative Gene Bayesian Regularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pal, S.K., De, R.K., Basak, J.: Unsupervised feature evaluation: A neuro-fuzzy approach. IEEE Trans. Neural Networks 11, 366–376 (2000)CrossRefGoogle Scholar
  2. 2.
    De, R.K., Basak, J., Pal, S.K.: Neuro-fuzzy feature evaluation with theoretical analysis. Neural Networks 12, 1429–1455 (1999)CrossRefGoogle Scholar
  3. 3.
    Basak, J., De, R.K., Pal, S.K.: Fuzzy feature evaluation index and connectionist realization-ii: Theoretical analysis. Information Sciences 111, 1–17 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Basak, J., De, R.K., Pal, S.K.: Unsupervised feature selection using neuro-fuzzy approach. Pattern Recognition Letters 19, 997–1006 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Pal, S.K., Basak, J., De, R.K.: Fuzzy feature evaluation index and connectionist realization. Information Sciences 105, 173–188 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bezdek, J., Pal, S.K.: Fuzzy models for pattern recognition. IEEE Press, New York (1992)Google Scholar
  7. 7.
    Kraaijveld, M.A., Mao, J., Jain, A.K.: A nonlinear projection method based on kohonen topology preserving maps. IEEE Trans. Neural Networks 6, 548–559 (1995)CrossRefGoogle Scholar
  8. 8.
    Rubner, J., Tavan, P.: A self-organizing network for principal component analysis. Europhys. Lett 10, 693–698 (1989)CrossRefGoogle Scholar
  9. 9.
    Golub, T.R., Slonim, T.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Downing, J.R., Caliguri, M.A., Bloomeld, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  10. 10.
    Shevade, S.K., Keerthi, S.S.: A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246–2253 (2003)CrossRefGoogle Scholar
  11. 11.
    Cawley, G.C., Talbot, N.L.C.: Gene selection in cancer classification using sparse logistic regression with bayesian regularization. Bioinformatics 22, 2348–2355 (2006)CrossRefGoogle Scholar
  12. 12.
    Goh, L., Song, Q., Kasabov, N.: A novel feature selection method to improve classification of gene expression data. In: APBC (2004)Google Scholar
  13. 13.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98 (2001)Google Scholar
  14. 14.
    Beer, G.D., et al.: Gene-expression profilespredict survival of patients with lung adenocarcinoma. Nature Medicine 8, 816–823 (2002)Google Scholar
  15. 15.
    Kim, D.W., Lee, K.H., Lee, D.: Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics 21, 1927–1934 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rajat K. De
    • 1
  • Anupam Ghosh
    • 2
  1. 1.Department of Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Computer Science and EngineeringNetaji Subhash Engineering CollegeKolkataIndia

Personalised recommendations