Clusters of Multivariate Stationary Time Series by Differential Evolution and Autoregressive Distance

  • Roberto Baragona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


Clustering MTS is a difficult task that has to be performed in several application fields. We propose a method based on the coefficients of vector autoregressive (VAR) models and differential evolution (DE) that may be applied to sets of stationary MTS. Results from a simulation experiment that includes both linear and non linear MTS are displayed for comparison with genetic algorithms (GAs), principal component analysis (PCA) and the k-means algorithm. Part of the Australian Sign Language (Auslan) data are examined to show the comparative performance of our procedure on a real world data set.


Autoregressive distance Cluster analysis Differential evolution Multivariate time series 


  1. 1.
    Allefeld, C., Bialonski, S.: Detecting syncronization clusters in multivariate time series via coarse-graining of Markov chains. Tech. rep., arXiv:0707.2479v1 [] (July 17, 2007)Google Scholar
  2. 2.
    Bandyopadhyay, S., Baragona, R., Maulik, U.: Clustering multivariate time series by genetic multiobjective optimization. Metron 68, 161–183 (2010)Google Scholar
  3. 3.
    Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE T. Sist. Man Cyb. – Part B: Cybernetics 28, 301–315 (1998)CrossRefGoogle Scholar
  4. 4.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)CrossRefzbMATHGoogle Scholar
  5. 5.
    Kakizawa, Y., Shumway, R.H., Taniguchi, M.: Discrimination and clustering for multivariate time series. J. Am. Stat. Assoc. 93, 328–340 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. Wiley, New York (2005)zbMATHGoogle Scholar
  7. 7.
    Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Min. Knowl. Disc. 7, 349–371 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liao, T.W.: Clustering of time series data - a survey. Pattern Recogn. 38, 1857–1874 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Liao, T.W.: A clustering procedure for exploratory mining of vector time series. Pattern Recogn. 40, 2550–2562 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Maharaj, E.A.: Comparison and classification of stationary multivariate time series. Pattern Recogn. 32, 1129–1138 (1999)CrossRefGoogle Scholar
  11. 11.
    Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recogn. 37, 487–501 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Piccolo, D.: A distance measure for classifying ARIMA models. J. Time Ser. Anal. 11, 153–164 (1990)CrossRefzbMATHGoogle Scholar
  13. 13.
    Price, K.V., Storn, R., Lampinen, J.: Differential evolution, a practical approach to global optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  14. 14.
    Singhal, A., Seborg, D.E.: Clustering multivariate time-series data. J. Chemometr. 19, 427–438 (2005)CrossRefGoogle Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Winker, P.: Optimization heuristics in econometrics: applications of threshold accepting. Wiley, Chichester (2001)zbMATHGoogle Scholar
  17. 17.
    Yang, K., Shahabi, C.: A PCA-based similarity measure for multivariate time series. In: MMDB 2004: Proceedings of the 2nd ACM international workshop on Multimedia databases, pp. 65–74. ACM, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Roberto Baragona
    • 1
  1. 1.Dept. of Communication and Social ResearchSapienza University of RomeRomeItaly

Personalised recommendations