Simultaneous Clustering: A Survey

  • Malika Charrad
  • Mohamed Ben Ahmed
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


Although most of the clustering literature focuses on one-sided clustering algorithms, simultaneous clustering has recently gained attention as a powerful tool that allows to circumvent some limitations of classical clustering approach. Simultaneous clustering methods perform clustering in the two dimensions simultaneously. In this paper, we introduce a large number of existing simultaneous clustering approaches applied in bioinformatics as well as in text mining, web mining and information retrieval and classify them in accordance with the methods used to perform the clustering and the target applications.


Simultaneous clustering Biclusters Block clustering 


  1. 1.
    Ahmad, W., Khokhar, A.: cHawk: an efficient biclustering algorithm based on bipartite graph crossing minimization. VLDB. ACM, New York (2007)Google Scholar
  2. 2.
    Balbi, S., Miele, R., Scepi, G.: Clustering of documents from a two-way viewpoint. In: 10th Int. Conf. on Statistical Analysis of Textual Data (2010)Google Scholar
  3. 3.
    Bichot, C.E.: Co-clustering documents and words by minimizing the normalized cut objective function. JMMA 9, 131–147 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ben-Dor, A., Chor, B., Karp, R.: Discovering local structure in gene expression data: The order–preserving submatrix problem. J. of Comput. Biol. 10, 373–384 (2003)CrossRefGoogle Scholar
  5. 5.
    Busygin, S., Jacobsen, G., Kramer, E.: Double conjugated clustering applied to leukemia microarray data. In: 2nd SIAM Int. Conf. on Data Mining (2002)Google Scholar
  6. 6.
    Caldas, J., Kaski, S.: Bayesian biclustering with the plaid model. In: IEEE Intern. Workshop on Machine Learning for Signal Processing, pp. 291–296 (2008)Google Scholar
  7. 7.
    Califano, A., Stolovitzky, G., Tu, Y.: Analysis of gene expression microarays for phenotype classification. In: Int. Conf. on Computational Molecular Biology (2000)Google Scholar
  8. 8.
    Charrad, M., Lechevallier, Y., Ahmed, M.b., Saporta, G.: Block Clustering for Web Pages Categorization. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 260–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Charrad, M.: une approche generique pour l’analyse croisant usage et contenu de sites Web par des methodes de bipartitionnement. PhD Thesis, Paris (2010)Google Scholar
  10. 10.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: 8th Int. Conf. on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)Google Scholar
  11. 11.
    Costa, G., Manco, G., Ortale, R.: A hierarchical model-based approach to co-clustering high-dimensional data. In: ACM sym. on App. comput., pp. 886–890 (2008)Google Scholar
  12. 12.
    Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: 7th ACM SIGKDD 2001, California, pp. 269–274 (2001)Google Scholar
  13. 13.
    Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: ACM SIGKDD, pp. 89–98. ACM, Washington DC (2003)Google Scholar
  14. 14.
    Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of link structure. J. Mach. Learn. Res. 3, 679–707 (2002)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. of the Natural Academy of Sciences USA (2000)Google Scholar
  16. 16.
    Govaert, G., Nadif, M.: Clustering with block mixture models. J. of the Pattern Recognition, 463–473 (2003)Google Scholar
  17. 17.
    Govaert, G.: Classification croisee. Th. de doctorat d’Etat, Paris (1983)Google Scholar
  18. 18.
    Grimal, C., Bisson, G.: Classification a partir d’une collection de matrices. CAp2010 (2010)Google Scholar
  19. 19.
    Gu, J.: Bayesian biclustering of gene expression data. BMC Genomics (2008).Google Scholar
  20. 20.
    Hartigan, J.A.: Direct clustering of a data matrix. J. of American Statistical Association 67(337), 123–129 (1972)CrossRefGoogle Scholar
  21. 21.
    Hochreiter, S., Bodenhofer, U., Heusel, M., Mayr, A.: FABIA: factor analysis for bicluster acquisition. Bioinformatics journal 26(12), 1520–1527 (2010)CrossRefGoogle Scholar
  22. 22.
    Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Technical report, Stanford University (2002)Google Scholar
  23. 23.
    Madeira, S.C., Oliveira, A.L.: Biclustering Algorithms for Biological Data Analysis: A Survey. IEEE/ACM Trans. on Comp. Biol. and Bioinfor., 24–45 (2004)Google Scholar
  24. 24.
    Madeira, S.C., Teixeira, M.C.: Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm. IEEE ACM (2010)Google Scholar
  25. 25.
    Murali, T.M., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Pacific Sym. on Biocomputing, Hawaii, USA, pp. 77–88 (2003)Google Scholar
  26. 26.
    Nadif, M., Govaert, G.: Block clustering of contingency table and mixture model. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 249–259. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Prelic, A., Bleuler, S., Zimmermann, P.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics, 122–129 (2006)Google Scholar
  28. 28.
    Rege, M., Dong, M.: Co-clustering Documents and Words Using Bipartite Isoperimetric Graph Partitioning. In: 6th IEEE Int. Conf. on Data Mining, pp. 532–541 (2006)Google Scholar
  29. 29.
    Reiss, D.J.: Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinfor., 280–302 (2006)Google Scholar
  30. 30.
    Robardet, C.: Contribution à la classification non supervisee : proposition d’une methode de bi-partitionnement, PhD Thesis, Claude Bernard University (2002).Google Scholar
  31. 31.
    Tanay, A., Sharan, R., Shamir, R.: Biclustering Algorithms: A Survey. In: Aluru, S. (ed.) Handbook of Comp. Molecular Biology, Chapman, Boca Raton (2004)Google Scholar
  32. 32.
    Tang, C., Zhang, L.A.: Interrelated two-way clustering: an unsupervised approach for gene expression data analysis. In: IEEE Int. Sym. on Bioinfo. and Bioeng. (2001)Google Scholar
  33. 33.
    Tibshirani, R., Hastie, T., Eisen, M.: Clustering methods for the analysis of DNA microarray data. Technical report, Stanford University (1999)Google Scholar
  34. 34.
    Van den, B.T.: Robust Algorithms for Inferring Regulatory Networks Based on Gene Expression Measurements. PhD Thesis (2009)Google Scholar
  35. 35.
    Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: ACM SIGMOD Int. Conf. on Management of Data, pp. 394–405 (2002)Google Scholar
  36. 36.
    Yang, J., Wang, H., Wang, W., Yu, P.S.: An improved biclustering method for analyzing gene expression profiles. Int. J. on Art. Int. Tools, 771–790 (2005)Google Scholar
  37. 37.
    Klugar, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Research 13, 703–716 (2003)CrossRefGoogle Scholar
  38. 38.
    Zha, H., He, X., Ding, C., Simon, H., Gu, M.: Bipartite Graph Partitioning and Data Clustering. In: ACM Conf. on Inf. and Knowledge Management, pp. 25–32 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Malika Charrad
    • 1
  • Mohamed Ben Ahmed
    • 1
  1. 1.National School of Computer ScienceManouba UniversityTunisia

Personalised recommendations