Neuro-Genetic Approach for Detecting Changes in Multitemporal Remotely Sensed Images

  • Aditi Mandal
  • Susmita Ghosh
  • Ashish Ghosh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


In the present work the searching capability of Genetic Algorithms (GAs) is exploited to evolve suitable Hopfield type neural network architectures for optimum change detection of multitemporal remotely sensed images. Experiments carried out on two remote sensing images confirm the effectiveness of the proposed technique.


Change detection Hopfield type neural network Genetic Algorithm Remote sensing Multitemporal images 


  1. 1.
    Singh, A.: Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing 10(6), 989–1003 (1989)CrossRefGoogle Scholar
  2. 2.
    Richards, J.A., Jia, X.: Remote Sensing Digital Image Analysis. Springer, Berlin (2006)Google Scholar
  3. 3.
    Ghosh, S., Bruzzone, L., Patra, S., Bovolo, F., Ghosh, A.: A context-sensitive technique for unsupervised change detection based on Hopfield type neural networks. IEEE Transactions on Geoscience and Remote Sensing 45(3), 778–789 (2007)CrossRefGoogle Scholar
  4. 4.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ghosh, A., Pal, N.R., Pal, S.K.: Object background classification using Hopfield type neural network. International Journal of Pattern Recognition and Artificial Intelligence 6(5), 989–1008 (1992)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Pearson Education, London (2003)Google Scholar
  7. 7.
    Pal, S.K., De, S., Ghosh, A.: Designing Hopfield type networks using genetic algorithms and its comparison with simulated annealing. International Journal of Pattern Recognition and Artificial Intelligence 11(3), 447–461 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aditi Mandal
    • 1
  • Susmita Ghosh
    • 2
  • Ashish Ghosh
    • 3
  1. 1.Ixia Technologies Pvt. Ltd.KolkataIndia
  2. 2.Department of Computer Science and EngineeringJadavpur UniversityIndia
  3. 3.MIU and CSCRIndian Statistical InstituteKolkataIndia

Personalised recommendations