Optimal Parameter Selection for Image Watermarking Using MOGA

  • Dinabandhu Bhandari
  • Lopamudra Kundu
  • Sankar K. Pal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


The notion of the proposed methodology is to optimize multidimensional nonlinear problem of conflicting nature that exists among imperceptibility and robustness in image watermarking. The methodology exploits the potentiality of Multi-Objective Genetic Algorithm (MOGA) in searching multiple non-dominated solutions lying on the Pareto front. The characteristics curve of the image are then analyzed and the most appropriate solution is selected using a merit function defined over evaluation measures. The efficacy of the suggested method is demonstrated by reporting the resultant watermarked images and restored watermarks extracted from their mean and median filtered versions.


Image Characteristics Curve Merit Function Imperceptibility Robustness SSIM 


  1. 1.
    Ruanaidh, J.J.K.Ó., Pun, T.: Rotation, translation and scale invariant digital image watermarking. In: Proceedings of the International Conference on Image Processing, Santa Barbara, California, October 1997, vol. 1, pp. 536–539 (1997)Google Scholar
  2. 2.
    Bhandari, D., Murthy, C.A., Pal, S.K.: Image enhancement using multi-objective genetic algorithms. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 309–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Ekstrom, M.P.: Digital image processing techniques. Academic Press, New York (1984)Google Scholar
  4. 4.
    Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. Technical Report Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling, Technical University of Denmark (1998)Google Scholar
  5. 5.
  6. 6.
  7. 7.
    Huang, H.C., Pan, J.S., Huamg, Y.H., Huang, K.C.: Progressive watermarking techniques using genetic algorithms. Circuits, Systems and Signal Processing 8, 58–68 (2007)Google Scholar
  8. 8.
    Katzenbeisser, S., Petitcolas, F.A.P.: Information hiding techniques for steganography and digital watermarking. Artech House Publishers (2000)Google Scholar
  9. 9.
    Maity, S.P., Kundu, M.K.: Genetic algorithms for optimality of data hiding in digital images. Soft Computing 13(4), 361–373 (2009)CrossRefGoogle Scholar
  10. 10.
    Schilling, D.L., Pickholtz, R.L., Millstein, L.B.: Theory of spread spectrum communications-a tutorial. IEEE Transactions on Communications 30(5), 855–884 (1982)CrossRefGoogle Scholar
  11. 11.
    Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation 2(3), 221–248 (1995)CrossRefGoogle Scholar
  12. 12.
    Gruhl, D., Bender, W., Morimoto, N.: Techniques for data hiding. In: Proceedings of the SPIE 2420, Storage and Retrieval for Image and Video Databases III, pp. 164–173 (1995)Google Scholar
  13. 13.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on image processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  14. 14.
    Xia, X.G., Boncelet, C.G., Arce, G.R.: A robust digital image watermarking method using wavelet-based fusion. In: Wavelet Transform Based Watermark for Digital Images, vol. 3, pp. 497–511. Optics Express (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dinabandhu Bhandari
    • 1
  • Lopamudra Kundu
    • 1
  • Sankar K. Pal
    • 1
  1. 1.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia

Personalised recommendations