Combined Topological and Directional Relations Based Motion Event Predictions

  • Nadeem Salamat
  • El-hadi Zahzah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


Spatial changes plays a fundamental role in modeling the spatio-temporal relations and spatio-temporal or motion event predictions. These predictions can be made through the conceptual neighborhood graph using the common sense continuity. This paper investigates that the extension in the temporal interval can effect the whole spatio-temporal relation and motion events. Spatio-temporal predicates form a unit of a motion event. We use the point temporal logic to extend the spatial predicates into the spatio-temporal or motion event predicates.


Spatio-temporal relations Spatial predicates Spatio-temporal predictions motion events 


  1. 1.
    Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, J.F., Ferguson, G.: Actions and Events in Interval Temporal Logic. Journal of Logic and Computation 4, 531–579 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.: RCC: a Calculus for Region-Based Qualitative Spatial Reasoning. GeoInformatica 1, 275–316 (1997)CrossRefGoogle Scholar
  4. 4.
    Cohn, A.G., Hazarika, S.M.: Qualitative Spatial Representation and Reasoning: An Overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Egenhofer, M., Mark, D.: Modeling Conceptual Neighborhoods of Topological Line-Region Relations. International Journal of Geographical Information Systems 9, 555–565 (1995)CrossRefGoogle Scholar
  6. 6.
    Egenhofer, M.J., Al-Taha, K.K.: Reasoning about Gradual Changes of Topological Relationships. In: Proceedings of the International Conference On GIS - From Space to Territory, pp. 196–219. Springer, London (1992)Google Scholar
  7. 7.
    Egenhofer, M.J., Franzosa, R.D.: Point Set Topological Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  8. 8.
    Erwig, M., Schneider, M., Hagen, F., Praktische Informatik Iv.: Spatio-Temporal Predicates. IEEE Transactions on Knowledge and Data Engineering 14, 881–901 (1999)Google Scholar
  9. 9.
    Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1-3), 111–134 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goyal, R.K., Egenhofer, M.J.: Similarity of cardinal directions. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 36–58. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Salamat, N., Zahzah, E.h.: 2D Fuzzy Spatial Relations: New Way of Computing and Representation,
  12. 12.
    Salamat, N., Zahzah, E.h.: On the improvement of Combined topological and Directional Relations Information,
  13. 13.
    Salamat, N., Zahzah, E.h.: Fusion of Fuzzy Spatial Relations. In: Proceedings of The 5th International Conference on Hybrid Artificial Intelligence Systems (HAIS (1)), pp. 294–301 (2010)Google Scholar
  14. 14.
    Salamat, N., Zahzah, E.h.: Fuzzy Spatial Relations For 2D Scene. In: Proceedings of The 2010 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV-2010), pp. 47–53 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nadeem Salamat
    • 1
  • El-hadi Zahzah
    • 1
  1. 1.Laboratoire de Mathématiques, Images et ApplicationsUniversité de La RochelleFrance

Personalised recommendations