How to Visualize a Crisp or Fuzzy Topic Set over a Taxonomy

  • Boris Mirkin
  • Susana Nascimento
  • Trevor Fenner
  • Rui Felizardo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


A novel method for visualization of a fuzzy or crisp topic set is developed. The method maps the set’s topics to higher ranks of the taxonomy tree of the field. The method involves a penalty function summing penalties for the chosen “head subjects” together with penalties for emerging “gaps” and “offshoots”. The method finds a mapping minimizing the penalty function in recursive steps involving two different scenarios, that of ‘gaining a head subject’ and that of ‘not gaining a head subject’. We illustrate the method by applying it to illustrative and real-world data.


Association Rule Penalty Function Spectral Cluster Taxonomy Tree Interior Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ACM Computing Classification System (1998), (Cited September 9, 2008)
  2. 2.
    Advanced Visual Systems (AVS), (Cited November 27 2010)
  3. 3.
    Beneventano, D., Dahlem, N., El Haoum, S., Hahn, A., Montanari, D., Reinelt, M.: Ontology-driven semantic mapping. In: Enterprise Interoperability III, Part IV, pp. 329–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Buche, P., Dibie-Barthelemy, J., Ibanescu, L.: Ontology mapping using fuzzy conceptual graphs and rules. In: ICCS Supplement, pp. 17–24 (2008)Google Scholar
  5. 5.
    Cali, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. Proceedings of the VLDB Endowment 3(1), 554–565 (2010)CrossRefGoogle Scholar
  6. 6.
    Dotan-Cohen, D., Kasif, S., Melkman, A.: Seeing the forest for the trees: using the gene ontology to restructure hierarchical clustering. Bioinformatics 25(14), 1789–1795 (2009)CrossRefGoogle Scholar
  7. 7.
    Gahegan, M., Agrawal, R., Jaiswal, A., Luo, J., Soon, K.-H.: A platform for visualizing and experimenting with measures of semantic similarity in ontologies and concept maps. Transactions in GIS 12(6), 713–732 (2008)CrossRefGoogle Scholar
  8. 8.
    Ghazvinian, A., Noy, N., Musen, M.: Creating mappings for ontologies in Biomedicine: simple methods work. In: AMIA 2009 Symposium Proceedings, pp. 198–202 (2009)Google Scholar
  9. 9.
    Mansingh, G., Osei-Bryson, K.-M., Reichgelt, H.: Using ontologies to facilitate post-processing of association rules by domain experts. Information Sciences 181(3), 419–434 (2011)CrossRefGoogle Scholar
  10. 10.
    Marinica, C., Guillet, F.: Improving post-mining of association rules with ontologies. In: The XIII International Conference Applied Stochastic Models and Data Analysis (ASMDA), pp. 76–80 (2009), ISBN 978-9955-28-463-5Google Scholar
  11. 11.
    Mazza, R.: Introduction to Information Visualization. Springer, London (2009), ISBN: 978-1-84800-218-0Google Scholar
  12. 12.
    Mirkin, B., Nascimento, S., Pereira, L.M.: Cluster-lift method for mapping research activities over a concept tree. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds.) Advances in Machine Learning II. SCI, vol. 263, pp. 245–257. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Mirkin, B., Nascimento, S.: Analysis of Community Structure, Affinity Data and Research Activities using Additive Fuzzy Spectral Clustering, TR-BBKCS-09-07, p. 24 (2009)Google Scholar
  14. 14.
    OWL 2 Web Ontology Language Overview (2009), (Cited November 27, 2010)
  15. 15.
  16. 16.
    Sosnovsky, S., Mitrovic, A., Lee, D., Prusilovsky, P., Yudelson, M., Brusilovsky, V., Sharma, D.: Towards integration of adaptive educational systems: mapping domain models to ontologies. In: Dicheva, D., Harrer, A., Mizoguchi, R. (eds.) Procs. of 6th International Workshop on Ontologies and Semantic Web for ELearning (SWEL 2008) at ITS 2008 (2008),
  17. 17.
    Thomas, H., O’Sullivan, D., Brennan, R.: Evaluation of ontology mapping representation. In: Proceedings of the Workshop on Matching and Meaning, pp. 64–68 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Boris Mirkin
    • 1
    • 2
  • Susana Nascimento
    • 3
  • Trevor Fenner
    • 2
  • Rui Felizardo
    • 3
  1. 1.Division of Applied Mathematics and InformaticsNational Research University - Higher School of EconomicsMoscowRussian Federation
  2. 2.Department of Computer ScienceBirkbeck University of LondonLondonUK
  3. 3.Department of Computer Science and Centre for Artificial Intelligence (CENTRIA), Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations