Unsupervised Image Segmentation with Adaptive Archive-Based Evolutionary Multiobjective Clustering

  • Chin Wei Bong
  • Hong Yoong Lam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)


The aim of this paper is to propose and apply state-of-the-art multiobjective scatter search for solving image segmentation problem. The algorithm incorporates the concepts of Pareto dominance, external archiving, diversification and intensification of solutions. The multiobjective optimization method is Archive-based Hybrid Scatter Search (AbYSS) for image segmentation. It utilized fuzzy clustering method with optimization of two fitness functions, viz., the global fuzzy compactness of the clusters and the fuzzy separation. We have tested the methods on two types of grey scale images, namely SAR (synthetic aperture radar) image and CT scan (Computer Tomography) image. We then compared it with fuzzy c-means (FCM) and a popular evolutionary multiobjective evolutionary clustering named NSGA-II. The performance result for the proposed method is compatible with the existing methods.


Multiobjective clustering soft computing 


  1. [1]
    Gonzalez, R.C., Woods, R.E.: Digital Image processing. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  2. [2]
    Zaart, A.E., Ziou, D., Wang, S., Jiang, Q.: Segmentation of SAR images using mixture of gamma distribution. Pattern Recognition 35(3), 713–724 (2002)CrossRefzbMATHGoogle Scholar
  3. [3]
    Lemarechal, C., Fjortoft, R., Marthon, P., Cubero-castan, E., Lopes, A.: SAR image segmentation by morphological methods. In: Proc. SPIE, vol. 3497, pp. 111–121 (1998)Google Scholar
  4. [4]
    Glover, F., Laguna, M., Martí, R.: Scatter search. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications, pp. 519–537. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [5]
    Mukhopadhyaya, A., Maulik, U.: A multiobjective approach to MR brain image segmentation. Applied Soft Computing 11, 872–880 (2011)CrossRefGoogle Scholar
  6. [6]
    Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS: Adapting Scatter Search to Multiobjective Optimization. IEEE Transactions on Evo. Comp. 12(4) (2008)Google Scholar
  7. [7]
    Bezdek, J.C.: Cluster validity with fuzzy sets. Cybernetics and Systems, 58–73 (1974)Google Scholar
  8. [8]
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  9. [9]
    Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. on Evolutionary Computing 11(1), 56–76 (2007)CrossRefGoogle Scholar
  10. [10]
    Saha, S., Bandyopadhyay, S.: Unsupervised pixel classification in satellite imagery using a new multiobjective symmetry based clustering approach. In: TENCON IEEE Region 10 Conference (2008)Google Scholar
  11. [11]
    Coello, C.A.C.: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Frontiers of Computer Science in China 3(1), 18–30 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chin Wei Bong
    • 1
  • Hong Yoong Lam
    • 2
  1. 1.School of Computer ScienceUniversiti Sains MalaysiaMalaysia
  2. 2.Department of Cardiothoracic SurgeryHospital Pulau PinangPenangMalaysia

Personalised recommendations