Advertisement

Discrete Circular Mapping for Computation of Zernike Moments

  • Rajarshi Biswas
  • Sambhunath Biswas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6744)

Abstract

Zernike moments are found to have potentials in pattern recognition, image analysis, image processing and in computer vision, apart from its traditional field of optics. Their invariance and orthogonality are attractive in many applications. However, the study of its computational structure can lead to some efficient and fast algorithms. In this paper, we have examined the use of a discrete circular map to compute Zernike moments in polar coordinates. It should be noted that such a discrete circular map, to represent a garylevel image in polar co-ordinates, does not require any special kind of sampling. Hence, zernike moments in polar coordinates can be computed easily. Comparison shows the proposed method is also efficient in computation.

References

  1. 1.
    Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Teh, C., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern anal. Mach. Intell. 10(4), 496–513 (1988)CrossRefzbMATHGoogle Scholar
  3. 3.
    Khotanzad, A., Hong, Y.H.: Rotation invariant image recognition using features selected via a systematic method. Pattern Recognition 23(10), 1089–1101 (1990)CrossRefGoogle Scholar
  4. 4.
    Liao, S.X., Pawlak, M.: On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern anal. Mach. Intell. 20, 1358–1364 (1998)CrossRefGoogle Scholar
  5. 5.
    Bisaws, S.N., Chaudhuri, B.B.: On the generation of discrete circular objects and their properties. Comput. Vision, Graphics ImageGoogle Scholar
  6. 6.
    Jiang, X.Y., Bunke, H.: Simple and fast computation of moments. Pattern Recognition 24(8), 801–806 (1991)CrossRefGoogle Scholar
  7. 7.
    Li, B.C., Shen, J.: Fast computation of moment invariant. Pattern Recognition 24(8), 807–813 (1991)CrossRefGoogle Scholar
  8. 8.
    Mukundan, R., Ramakrishnan, K.R.: Fast computation of Legendre and Zernike moments. Pattern Recognition 28(9), 1433–1442 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Belkasim, S.O., Ahmadi, M., Sridhar, M.: Efficient algorithm for fast computation of Zernike moments. J. Franklin Inst. Eng. Appl. Math. 333, 577–581 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chan, F.H.Y., Lam, F.K.: An all adder systolic structure for fast computation of moments. J. VLSI Signal Process. 12, 159–175 (1996)CrossRefGoogle Scholar
  11. 11.
    Shu, H.Z., Luo, L.M., Yu, W.X., Fu, Y.: A new fast method computing Legendre moments. Pattern Recognition 33(2), 341–348 (2000)CrossRefGoogle Scholar
  12. 12.
    Gu, J., Su, H.Z., Toumoulin, C., Luo, L.M.: A novel algorithm for fast computation of Zernike moments. Pattern Recognition 35, 2905–2911 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Xin, Y., Pawlak, M., Liao, S.: Accurate computation of Zernike moments in polar coordinates. IEEE Trans. on Image Processing 16(2), 581–587 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wee, C.Y., Raveendran, P.: On the computational aspects of Zernike moments. Image and Vision Computing 25(6), 967–980 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rajarshi Biswas
    • 1
  • Sambhunath Biswas
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations