Skip to main content

Stabilization of Positive Continuous-Time Interval Systems

  • Conference paper

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 98))

Abstract

This paper is concerned with the stability and stabilization of continuous-time interval systems. For stability analysis and stabilization of positive continuous-time interval systems, new necessary and sufficient conditions are derived. In particular, the proposed conditions can be easily implemented by using linear programming method. It is utilized to stabilize the system being positive and asymptotically stable via dynamic state feedback control. Finally, we provide an example to demonstrate the effectiveness and applicability of the theoretical results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, A., Neumann, M., Stern, R.J.: Nonnegative Matrices in Dynamic Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  2. Farina, L., Rinaldi, S.: Positive Linear System: Theory and Application. Wiley, New York (2000)

    Book  Google Scholar 

  3. Kaczorek, T.: 1-D and 2-D Systems. Springer, Berlin (2002)

    Google Scholar 

  4. Luenberger, D.G.: Introduction to Dynamic Systems. Wiley, New York (1979)

    MATH  Google Scholar 

  5. Caccetta, L., Foulds, L.R., Rumchev, V.G.: A Positive Linear Discrete-Time Model of Capacity Planning and Its Controllability Properties. Math. Comput. Model 40(1-2), 217–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Leenheer, P.D., Aeyels, D.: Stabilization of Positive Linear System. Syst. Contr. Lett. 44(4), 259–271 (2001)

    Article  MATH  Google Scholar 

  7. Benvenuti, L., Farina, L.: Eigenvalue Regions for Positive Systems. Syst. Contr. Lett. 51, 325–330 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu, X., Wang, L., Yu, W., Zhong, S.: Constrained Control of Positive Discrete-Time Systems with Delays. IEEE Trans. Circuits Syst. II, Exp. Brief. 55(2), 193–197 (2008)

    Article  Google Scholar 

  9. Liu, X.: Constrained Control of Positive Systems with Delays. IEEE Trans. Autom. Contr. 54(7), 1596–1600 (2009)

    Article  Google Scholar 

  10. Liu, X.: Stability Analysis of Switched Positive Systems: A Switched Linear Copositive Lyapunov Function Method. IEEE Trans. Circuits Syst. II, Exp. Brief. 56(5), 414–418 (2009)

    Article  Google Scholar 

  11. Rami, M.A., Tadeo, F., Benzaouia, A.: Control of Constrained Positive Discrete Systems. In: Proceeding American Control Conference, pp. 5851–5856 (2007)

    Google Scholar 

  12. Rami, M.A., Tadeo, F.: Positive Observation Problem for Linear Discrete Positive Systems. In: Proceeding 45th IEEE Conference Decision Control, pp. 4729–4733. IEEE Press, New York (2007)

    Google Scholar 

  13. Back, J., Astolfi, A.: Positive Linear Observers for Positive Linear Systems: A Sylvester Equation Approach. In: Proceeding American Control Conference, pp. 4037–4042 (2006)

    Google Scholar 

  14. Kaczorek, T.: Stabilization of Positive Linear System by State-Feedback. Pomiary, Automatyka, Kontrola 3, 2–5 (1999)

    Google Scholar 

  15. Gao, H., Lam, J., Wang, C., Xu, S.: Control for Stability and Positivity: Equivalent Conditions and Computation. IEEE Trans. Circuits Syst. II, Exp. Brief. 52(9), 540–544 (2005)

    Article  Google Scholar 

  16. Rami, M.A., Tadeo, F.: Controller Synthesis for Positive Linear Systems with Bounded Controls. IEEE Trans. Circuits Syst. II, Exp. Brief. 54(2), 151–155 (2007)

    Article  Google Scholar 

  17. Roszak, B., Davison, E.J.: Necessary and Sufficient Conditions for Stabilizability of Positive LTI Systems. Syst. Contr. Lett. 58, 474–481 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shu, Z., Lam, J., Gao, H., Du, B., Wu, L.: Positive Observers and Dynamic Output-Feedback Controllers for Interval Positive Linear Systems. IEEE Trans. Circuits Syst. I, Regul. Paper 55(10), 3209–3222 (2008)

    Article  MathSciNet  Google Scholar 

  19. Ling, P., Lam, J., Shu, Z.: Positive Observers for Positive Interval Linear Discrete-Time Delay Systems. In: Proceeding 48th IEEE Conference Decision Control, pp. 6107–6112. IEEE Press, New York (2009)

    Google Scholar 

  20. Coleman, T., Branch, M., Grace, A.: Optimization Toolbox for Use with Matlab. The Math Works Inc., Natick (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, TT., Tung, SL., Juang, YT. (2011). Stabilization of Positive Continuous-Time Interval Systems. In: Zhu, M. (eds) Electrical Engineering and Control. Lecture Notes in Electrical Engineering, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21765-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21765-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21764-7

  • Online ISBN: 978-3-642-21765-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics