Models, modelling languages, modelling frameworks and their background have dominated conceptual modelling research and information systems engineering for last four decades. Conceptual models are mediators between the application world and the implementation or system world. Design science distinguishes the relevance cycle as the iterative process that re-inspects the application and the model, the design cycle as the iterative model development process, and the rigor cycle that aims in grounding and adding concepts developed to the knowledge base. This separation of concern into requirements engineering, model development and conceptualisation is the starting point for this paper.

Research in design science and on conceptual modelling resulted in a large body of knowledge, practices, and techniques. The two research approaches have developed their approaches and solutions. This paper shows how the two approaches can be integrated without making a sacrifice for integration. Modelling is based on modelling activities. Integration therefore starts with an integrated view on modelling. As an example of this integration we shall use reasoning support for modelling. Each modelling step considers specific work products, orients towards specific aspects of the system or application, involves different partners, and uses a variety of resources.


conceptual modelling design science intellectual support for modelling modelling processes and workflows description prescription documentation conceptualisation explanation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baskerville, R.: What design science is not. EJIS 17(5), 441–443 (2008)Google Scholar
  2. 2.
    Baskerville, R., Lyytinen, K., Sambamurthy, V., Straub, D.: A response to the design-oriented information systems research memorandum. European Journal of Information Systems, 1–5 (2010)Google Scholar
  3. 3.
    Vom Brocke, J., Buddendick, C.: Reusable conceptual models - requirements based on the design science research paradigm. In: DESRIST, pp. 576–604 (2006)Google Scholar
  4. 4.
    Dahanayake, A., Thalheim, B.: Co-evolution of (Information) system models. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. Lecture Notes in Business Information Processing, vol. 50, pp. 314–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Deppert, W.: Theorie der Wissenschaft. Christian-Albrechts-University at Kiel, Lecture notes for academic year 2008/2009 (2009),
  6. 6.
    Embley, D., Thalheim, B. (eds.): Handbook of conceptual modelling: Its Usage and Its Challenges. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Klabbers, J.H.G.: A framework for artifact assessment and theory testing. Simulation & Gaming 37(2), 155–173 (2006)CrossRefGoogle Scholar
  8. 8.
    Gregor, S.: The nature of theory in information systems. MIS Quarterly 30(3), 611–642 (2006)Google Scholar
  9. 9.
    Gregor, S., Jones, D.: The anatomy of a design theory. Journal of Association for Information Systems 8(5), 312–335 (2007)Google Scholar
  10. 10.
    Heinrich, L.J., Heinzl, A., Riedl, R.: Wirtschaftsinformatik: Einführung und Grundlegung, 4th edn. Springer, Berlin (2011)CrossRefGoogle Scholar
  11. 11.
    Hesse, W.: Dinosaur meets Archaeopteryx? or: Is there an alternative for Rational’s Unified Process? Software and System Modeling 2(4), 240–247 (2003)CrossRefGoogle Scholar
  12. 12.
    Hesse, W., Verrijn-Stuart, A.A.: Towards a theory of information systems: The FRISCO approach. In: EJC, pp. 81–91 (2000)Google Scholar
  13. 13.
    Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS Quaterly 28(1), 75–105 (2004)Google Scholar
  14. 14.
    Hevner, A.R.: The three cycle view of design science. Scandinavian J. Inf. Systems 19(2) (2007)Google Scholar
  15. 15.
    Iivari, J.: A paradigmatic analysis of information systems as a design science. Scandinavian J. Inf. Systems 19(2) (2007)Google Scholar
  16. 16.
    Junglas, I., Niehaves, B., Spiekermann, S., Stahl, B.C., Weitzel, T., Winter, R., Baskerville, R.: The inflation of academic intellectual capital: the case for design science research in europe. European Journal of Information Systems, 1–6 (2010)Google Scholar
  17. 17.
    Koch, S., Strecker, S., Frank, U.: Conceptual modelling as a new entry in the bazaar: The open model approach. In: OSS. IFIP, vol. 203, pp. 9–20. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Kuechler, B., Vaishnavi, V.: On theory development in design science research: Anatomy of a research project. European Journal of Information Systems 17(5), 489–504 (2008)CrossRefGoogle Scholar
  19. 19.
    Land, F., Loebbecke, C., Angehrn, A.A., Clemons, E.K., Hevner, A.R., Mueller, G.: ICSI 2008 panel report: Design science in information systems: Hegemony, bandwagon, or new wave? Communication of the Association for Information Systems 24(29), 501–508 (2009)Google Scholar
  20. 20.
    Lyytinen, K., Baskerville, R., Iivari, J., Téeni, D.: Why the old world cannot publish? overcoming challenges in publishing high-impact is research. EJIS 16(4), 317–326 (2007)Google Scholar
  21. 21.
    Madnick, S.E.: The challenge: To be part of the solution instead of being part of the problem. In: Second Annual Workshop on Information Technology and Systems, pp. 1–9 (1992)Google Scholar
  22. 22.
    March, S.T., Smith, G.F.: Design and natural science research on information technology. Decision Support Systems 15(4), 251–266 (1995)CrossRefGoogle Scholar
  23. 23.
    March, S.T., Storey, V.C.: Design science in the information systems discipline: An introduction to the special issue on design science research. MIS Quarterly 4, 725–730 (2008)Google Scholar
  24. 24.
    Markus, M.L., Majchrzak, A., Gasser, L.: A design theory for systems that support emergent knowledge processes. MIS Quarterly 26(3), 179–212 (2002)Google Scholar
  25. 25.
    Mittelstraß, J. (ed.): Enzyklopädie Philosophie und Wissenschaftstheorie. J.B. Metzler, Stuttgart (2004)Google Scholar
  26. 26.
    Niehaves, B.: On epistemological pluralism in design science. Scandinavian J. Inf. Systems 19(2) (2007)Google Scholar
  27. 27.
    Olivé, A.: Conceptual modeling of information systems. Springer, Berlin (2007)Google Scholar
  28. 28.
    Orlikowski, W.J.: Using technology and constituting structures: A practice lens for studying technology in organizations. Organization Science 11(4), 404–428 (2000)CrossRefGoogle Scholar
  29. 29.
    Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., Loos, P., Mertens, P., Oberweis, A., Sinz, E.J.: Memorandum on design-oriented information systems research. European Journal of Information Systems, 1–4 (2010)Google Scholar
  30. 30.
    Schewe, K.-D., Thalheim, B.: Semantics in data and knowledge bases. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2008. LNCS, vol. 4925, pp. 1–25. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Silver, M.S., Markus, M.L., Beath, C.M.: The information technology interaction model: A foundation for the MBA core course. MIS Quarterly 19(3), 361–390 (1995)CrossRefGoogle Scholar
  32. 32.
    Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge (1981)Google Scholar
  33. 33.
    Sutton, R.I., Staw, B.M.: What theory is not. Administrative Science Quartly 40(3), 371–384 (1995)CrossRefGoogle Scholar
  34. 34.
    Thalheim, B.: Codesign of structures, functions and interfaces in database applications. Technical Report Preprint I-05-1997, Brandenburg University of Technology at Cottbus, Institute of Computer Science (1997) (in German)Google Scholar
  35. 35.
    Thalheim, B.: Entity-relationship modeling – Foundations of database technology. Springer, Berlin (2000)CrossRefGoogle Scholar
  36. 36.
    Thalheim, B.: Co-design of structuring, funtionality, distribution, and interactivity of large information systems. Computer Science Reports 15/03, Cottbus University of Technology, Computer Science Institute (2003)Google Scholar
  37. 37.
    Thalheim, B.: Database component ware. In: ADC 2003. Australian Computer Science Communications, vol. 25(2), pp. 13–26 (2003)Google Scholar
  38. 38.
    Thalheim, B.: Towards a theory of conceptual modelling. Journal of Universal Computer Science 16(20), 3102–3137 (2010), Google Scholar
  39. 39.
    Thalheim, B.: The theory of conceptual models, the theory of conceptual modelling and foundations of conceptual modelling. In: The Handbook of Conceptual Modeling: Its Usage and Its Challenges, ch. 17, pp. 547–580. Springer, Berlin (2011)Google Scholar
  40. 40.
    Vahidov, R.: Design researcher’s is artifact: a representational framework. In: DESRIST, pp. 9–33 (2006)Google Scholar
  41. 41.
    Venable, J.R.: Design science research post hevner et al.: Criteria, standards, guidelines, and expectations. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 109–123. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  42. 42.
    Venable, J.R.: The role of theory and theorising in design science research. In: DESRIST (2006)Google Scholar
  43. 43.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.: Building an information system design theory for vigilant eis. Information Systems Research 3(1), 36–59 (1992)CrossRefGoogle Scholar
  44. 44.
    Winter, R.: Design science research in Europe. European Journal of Information Systems 17(5), 470–475 (2008)CrossRefGoogle Scholar
  45. 45.
    Zelewski, S.: Kann Wissenschaftstheorie behilflich für die Publikationspraxis sein? In: Lehner, F., Zelewski, S. (eds.) Wissenschaftstheoretische Fundierung und wissenschaftliche Orientierung der Wirtschaftsinformatik, pp. 71–120. GTO (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ajantha Dahanayake
    • 1
  • Bernhard Thalheim
    • 2
  1. 1.Dept. of Information Technology and MarketingGeorgia College and State University, J. Whitney Bunting School of BusinessMilledgevilleUSA
  2. 2.Department of Computer ScienceChristian Albrechts University KielKielGermany

Personalised recommendations