Structural and Mental Models



In this example both the original and the model can be observed: the photo of the castle as well as the model in Disneyland can be compared to the Bavarian original in detail. In scientific models for chemical structures the spheres of the model cannot be compared to the submicroscopic original atoms, ions or molecules, because it is impossible to see them – neither with a magnifying glass nor with the best microscope.


Mental Model Spatial Ability Scientific Model Sphere Packing Salt Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Haeusler K (1998) Highlights in der Chemie. Aulis, KoelnGoogle Scholar
  2. 2.
    Stachowiak H (1965) Gedanken zu einer allgemeinen Theorie der Modelle. Studium Generale 18:432Google Scholar
  3. 3.
    Steinbuch K (1977) Denken in Modellen. In: Schaefer, G., u. a.: Denken in Modellen. Westermann, BraunschweigGoogle Scholar
  4. 4.
    Kircher E (1977) Einige erkenntnistheoretische und wissenschaftstheoretische Auffassungen zur Fachdidaktik. Chim.did. 3:61Google Scholar
  5. 5.
    Harsch G (1981) Kristallgeometrie. Packungen und Symmetrie in Stereodarstellungen. Diesterweg, FrankfurtGoogle Scholar
  6. 6.
    Geomix, Ratec: Koerberstr. 15, 60433 FrankfurtGoogle Scholar
  7. 7.
    Leybold Didactic: Postfach 1365, 50330 HuerthGoogle Scholar
  8. 8.
    Institute for Chemical Education: University of Madison, 1101 University Av., Madison WI 53707, USAGoogle Scholar
  9. 9.
    Harsch G (1985) Vom Wuerfelspiel zum Naturgesetz. Simulation und Modelldenken in der Physikalischen Chemie. VCH, WeinheimGoogle Scholar
  10. 10.
    Harsch G (1982) Statistische Spiele für den naturwissenschaftlichen Unterricht. Dr. Flad, StuttgartGoogle Scholar
  11. 11.
    Harsch G (1984) Kinetics and mechanism – a games approach. J Chem Educ 61:1039CrossRefGoogle Scholar
  12. 12.
    Eigen M, Winkler R (1975) Das Spiel – Naturgesetze steuern den Zufall. Piper, MünchenGoogle Scholar
  13. 13.
    Buck P (1994) Die Teilchenvorstellung – ein “Unmodell”. Chem Sch 41:412Google Scholar
  14. 14.
    Buck P (1994) Wie kann man die “Andersartigkeit der Atome” lehren? Chem Sch 41Google Scholar
  15. 15.
    Asselborn W, u.a.: Chemie heute. SI. Braunschweig 2010 (Schroedel)Google Scholar
  16. 16.
    Sauermann D, Barke H-D (1998) Chemie für Quereinsteiger. Schueling, Muenster. Band 1: Strukturchemie und Teilchensystematik, also
  17. 17.
    Sauermann D, Barke H-D (1998) Chemie für Quereinsteiger. Schueling, Muenster. Band 2: Struktur der Metalle und Legierungen, also
  18. 18.
    Sauermann D, Barke H-D (1998) Chemie für Quereinsteiger. Schueling, Muenster. Band 4: Ionenkristalle mit einfachen Gitterbausteinen, also
  19. 19.
    Sauermann D, Barke H-D (1998) Chemie für Quereinsteiger. Schueling, Muenster. Band 3: Moleküle und Molekuelstukturen, also
  20. 20.
    Barke H-D (1994) Chemical education and spatial ability. J Chem Educ 70:968CrossRefGoogle Scholar
  21. 21.
    Barke H-D (1980) Raumvorstellung im naturwissenschaftlichen Unterricht. MNU 33:129Google Scholar
  22. 22.
    Barke H-D (1983) Das Training des Raumvorstellungsvermoegens durch die Arbeit mit Strukturmodellen im Chemieunterricht. MNU 36:352Google Scholar
  23. 23.
    Barke H-D, Wirbs H (2002) Structural units and chemical formulae. CERAPIE 3:185Google Scholar
  24. 24.
    Dickerson RE, Geis I (1981) Chemie – eine lebendige und anschauliche Einfuehrung. Verlag Chemie, WeinheimGoogle Scholar
  25. 25.
    Watson JD (1969) Die Doppel-Helix. Rowohlt, HamburgGoogle Scholar
  26. 26.
    Faita: Postfach 1146, 83402 Mitterfelden, GermanyGoogle Scholar

Further Reading

  1. Ben-Zvi R, Eylon B, Silberstein J (1987) Students’ visualization of a chemical reaction. Educ Chem 24:117–120Google Scholar
  2. Car M (1984) Model confusion in chemistry. Res Sci Educ 14:97–103CrossRefGoogle Scholar
  3. De Vos W, Verdonk AH (1996) The particulate nature of matter in science education and in science. J Res Sci Teach 33(6):657–664CrossRefGoogle Scholar
  4. Ehrlén K (2007) Children’s understanding of globes as a model of the Earth: a problem of contextualizing. Int J Sci Educ 30:221–238CrossRefGoogle Scholar
  5. Gabel DL (1993) Use of the particle nature of matter in developing conceptual understanding. J Chem Educ 70(3):193–194CrossRefGoogle Scholar
  6. Gabel DL, Samuel KV, Hunn D (1987) Understanding the particulate nature of matter. J Chem Educ 64:695–697CrossRefGoogle Scholar
  7. Griffiths AK, Preston KR (1992) Students’ misconceptions relating to fundamental characteristics of atoms and molecules. J Res Sci Teach 29:611–628CrossRefGoogle Scholar
  8. Grosslight L, Unger C, Jay E, Smith CL (1991) Understanding models and their use in science: conceptions of middle and high school students and experts. J Res Sci Teach 28(9):799–822CrossRefGoogle Scholar
  9. Haidar HA, Abraham MR (1991) A comparison of applied and theoretical knowledge of concepts’ based on the particulate nature of matter. J Res Sci Teach 28(10):919–938Google Scholar
  10. Harrison AG, Treagust DF (1996) Secondary students mental models of atoms and molecules: implications for teaching science. Sci Educ 80:509–534CrossRefGoogle Scholar
  11. Harrison AG, Treagust DF (2002) The particulate nature of matter: challenges in understanding the submicroscopic world. In: Gilbert JK, Jong OD, Justi RV, Driel JH (eds) Chemical education: towards research based practice. Kluwer Academic, AmsterdamGoogle Scholar
  12. Ingaham AM, Gilbert JK (1991) The use of analogue models by students of chemistry at higher education level. Int J Sci Educ 13:193–202CrossRefGoogle Scholar
  13. Johnson P (1998) Progression in children’s understanding of a ‘basic’ particle theory: a longitudinal study. Int J Sci Educ 20(4):393–412CrossRefGoogle Scholar
  14. Krishnan SR, Howe AC (1994) The mole concept: developing on Instrument to assess conceptual understanding. J Chem Educ 71:653–655CrossRefGoogle Scholar
  15. Larkin JH (1979) Information processing models and science instruction. In: Lochhead J, Clement J (eds) Cognitive process instruction: research in teaching thinking skills. The Franklin Institute Press, Philadelphia, PA, pp 109–119Google Scholar
  16. Nahum TL, Mamlok-Naaman R, Hofstein A, Krajcik J (2007) Developing a new teaching approach for the chemical bonding concept aligned with current scientific and pedagogical content knowledge. Sci Educ 91:579–603CrossRefGoogle Scholar
  17. Niaz M, Aguilera D, Maza A, Liendo G (2002) Arguments, contradictions, resistances and conceptual change in students’ understanding of atomic structure. Sci Educ 86:505–525CrossRefGoogle Scholar
  18. Nussbaum J (1985) The particulate nature of matter in the gaseous phase. In: Driver R, Guesne E, Tiberghien A (eds) Children’s ideas in science. Open University Press, Milton Keynes, UK, pp 124–144Google Scholar
  19. Paivio A (1986) Mental representations: a dual coding approach. Oxford University Press, New YorkGoogle Scholar
  20. Schnotz W, Preuβ A (1999) Task-dependent construction of mental models as a basis for conceptual change. In: Schnotz W, Vosniadou S, Carretero M (eds) New perspectives on conceptual change. Pergamon, Amsterdam, pp 193–222Google Scholar
  21. Srere M (1985) The gaseous state. In: Driver R, Guesne E, Tiberghien A (eds) Children’s ideas in science. Open University Press, Philadelphia, pp 105–123Google Scholar
  22. Vekiri E (2002) What is the value of graphical displays in learning? Educ Psychol Rev 14:261–312CrossRefGoogle Scholar
  23. Vosniadou S, Brewer WF (1992) Mental models of the earth: a study of conceptual change in childhood. Cogn Psychol 24:535–585CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Didaktik der ChemieWestf. Wilhelms-Universität MünsterMünsterGermany
  2. 2.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations