Learners Ideas and Misconceptions



Some decades ago it was assumed that students do not have any preconceptions or knowledge in chemistry: good preparation for a chemistry lesson only had to decide, which new terms were to be introduced in which order and with which experiments or models. Empirical studies, however, showed that learners have preconceptions for many topics and that these preconceptions do not match today’s scientific concepts. For that reason a first basic question of chemistry education is: which preconceptions exist for which topics and how can we effect conceptual change? Often the preconceptions are simply called “false” – without considering that students make correct observations and create individual mental models on the base of their observations. Therefore, these conceptions should better be called: Conceptions of everyday life Primary or prescientific conceptions Student precomprehension or preconception Misconcepts or misconceptions


Conceptual Change Scientific Idea Silver Sulfide Phlogiston Theory Bunsen Flame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


  1. 1.
    Strube W (1976) Der historische Weg der Chemie. Grundstoffindustrie, LeipzigGoogle Scholar
  2. 2.
    Reuber R, Wellens H, Gruss K (1972) Chemikon – Chemie in Übersichten. Umschau, FrankfurtGoogle Scholar
  3. 3.
    Lockemann G (1950) Geschichte der Chemie. de Gruyter, BerlinGoogle Scholar
  4. 4.
    Bugge G (1955) Das Buch der Grossen Chemiker. Band 1. Chemie, WeinheimGoogle Scholar
  5. 5.
    Dijksterhuis FJ (1956) Die Mechanisierung des Weltbildes. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Lasswitz K (1890) Geschichte der Atomistik. Bände 1 und 2. Voss, HamburgGoogle Scholar
  7. 7.
    Barke H-D (1995) Strukturorientierter Chemieunterricht und Teilchenverknüpfungsregeln. Chemie in der Schule 42:49Google Scholar
  8. 8.
    Driver R (1985) Children’s ideas in science. University Press, PhiladelphiaGoogle Scholar
  9. 9.
    Pfundt H (1975) Ursprüngliche Vorstellungen der Schüler für chemische Vorgänge. MNU 28:157Google Scholar
  10. 10.
    Münch R et al (1982) Luft und Gewicht. NiU-P/C 30:429Google Scholar
  11. 11.
    Weerda J (1981) Zur Entwicklung des Gasbegriffs beim Kinde. NiU-P/C 29:90Google Scholar
  12. 12.
    Pfundt H (1981) Das atom – Letztes Teilungsstück oder Erster Aufbaustein. Chimdid 7:75Google Scholar
  13. 13.
    Novick S, Nussbaum J (1981) Pupils’ understanding of the particulate nature of matter. Sci Ed 65:187CrossRefGoogle Scholar
  14. 14.
    Barke H-D (1987) Irgendwas muß doch da sein – der Horror vacui in den Schülervorstellungen vom Aufbau der Gase. GDCh-Mitteilungsblatt Nr. 10, FrankfurtGoogle Scholar
  15. 15.
    Ausubel DP (1974) Psychologie des Unterrichts. Weinheim, BeltzGoogle Scholar
  16. 16.
    Piaget J, Inhelder B (1971) Die Entwicklung des raeumlichen Denkens beim Kinde. Klett, StuttgartGoogle Scholar
  17. 17.
    Pfundt H (1975) Urspruengliche Erklaerungen der Schueler für chemische Vorgaenge. MNU 28:157Google Scholar
  18. 18.
    Duit R (1996) Lernen als Konzeptwechsel im naturwissenschaftlichen Unterricht. In: Lernen in den Naturwissenschaften. Kiel, IPNGoogle Scholar
  19. 19.
    Temechegn E, Sileshi Y (2004) Concept cartoons as a strategy in learning, teaching and assessment in chemistry. Addis Ababa, Ethiopia, University PrintGoogle Scholar
  20. 20.
    Taber K (2002) Chemical misconceptions – prevention, diagnosis and cure, vol 1, 2. Royal Society of Chemistry, LondonGoogle Scholar
  21. 21.
    Barke H-D (2009) Misconceptions in chemistry – addressing perceptions in chemical education. Springer, Heidelberg, New YorkGoogle Scholar
  22. 22.
    Petermann K, Friedrich J, Oetken M (2008) Das an Schuelervorstellungen orientierte Unterrichts-verfahren. Chemkon 15:110CrossRefGoogle Scholar
  23. 23.
    Barke H-D, Doerfler T (2009) Das an Schuelervorstellungen orientierte Unterrichtsverfahren: beispiel neutralisation. Chemkon 16:141CrossRefGoogle Scholar
  24. 24.
    Barke H-D, Strehle N, Roelleke R (2007) Das Ion im Chemieunterricht – noch Vorstellungen von gestern ? MNU 60:366Google Scholar
  25. 25.
    Sileshi Y (2007) The particulate nature of matter. Diagnosis of misconceptions and their remedy in chemical education. Schueling, MuensterGoogle Scholar
  26. 26.
    Johnstone AH (1997) Chemistry teaching – science or alchemy? J Chem Educ 74:268CrossRefGoogle Scholar
  27. 27.
    Mahaffy P (2004) The future shape of chemistry education. Chem Educ: Res Pract 5:229CrossRefGoogle Scholar
  28. 28.
    Vygotsky LS (1978) Mind and society: the development of higher mental processes. Harvard University Press, CambridgeGoogle Scholar
  29. 29.
    Shulman LS (1986) Those who understand: knowledge growth in teaching. Educ Res 15:4Google Scholar
  30. 30.
    Becker H-J (1988) Verbraucherfragen im RIAS-Telefonstudio: Gegenstand fachdidaktischer Forschung? Chim did 14:69Google Scholar

Further Reading

  1. Andersen B (1990) Pupils conceptions of matter and its transformation (Age 12–16). Stud Sci Educ 18:53–85CrossRefGoogle Scholar
  2. Benson DL, Wittrock MC, Baur ME (1993) Students’ preconceptions of the nature of gases. J Res Sci Teach 30:587–597CrossRefGoogle Scholar
  3. Ben-Zvi R, Eylon BR, Silberstein J (1986) Is an atom of copper malleable? J Chem Educ 63:64–66CrossRefGoogle Scholar
  4. Boo HK (1998) Students’ understanding of chemical bonds and the energetics of chemical reactions. J Res Sci Teach 35:569–581CrossRefGoogle Scholar
  5. Cakmakci G, Leach J, Donnelly J (2006) Students’ ideas about reaction rate and its relationship with concentration or pressure. Int J Sci Educ 28:1795–1815CrossRefGoogle Scholar
  6. Carson EM, Watson JR (1999) Undergraduate students’ understanding of enthalpy change. Univ Chem Educ 3:46–51, Available from Google Scholar
  7. Chandrasegaran AL, Treagust DF, Mocerino M (2007) The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chem Educ Res Pract 8:293–307, CrossRefGoogle Scholar
  8. Driver R, Leach J, Scott P, Wood-Robinson C (1994) Young people’s understanding of science concepts: implications of cross-age studies for curriculum planning. Stud Sci Educ 24:75–100CrossRefGoogle Scholar
  9. Horton C (2001) Student preconceptions and misconceptions in chemistry. [Online] Accessed May 27, 2004 from
  10. Ivarsson J, Schoultz J, Säljö R (2002) Map reading versus mind reading: revisiting children’s understanding of the shape of the earth. In: Limón M, Mason L (eds) Reconsidering conceptual change. Issues in theory and practice. Kluwer, Dordrecht, pp 77–99CrossRefGoogle Scholar
  11. Johnson P (1998) Children’s understanding of changes of state involving the gas state, Part l: Boiling water and the particle theory. Int J Sci Educ 20(5):567–583CrossRefGoogle Scholar
  12. Johnson P (1998) Children’s understanding of changes of state involving the gas state, Part 2: Evaporation and condensation below boiling point. Int J Sci Educ 20(6):695–709CrossRefGoogle Scholar
  13. Kind V (2004) Beyond appearance: students’ misconceptions about chemical ideas (2nd Edn). School of Education Durham University, DurhamGoogle Scholar
  14. Nakhleh MB (1993) Are our students conceptual thinkers or algorithmic problem solvers? Identifying conceptual thinkers in chemistry. J Chem Educ 70:52–55CrossRefGoogle Scholar
  15. Nakhleh MB, Mitchell RC (1993) Conceptual learning versus problem solving: there is a difference. J Chem Educ 70:190–192CrossRefGoogle Scholar
  16. Othman J, Treagust DF, Chandrasegaran AL (2007) An investigation of the relationship between students’ conceptions of the particulate nature of matter and their understanding of chemical bonding. Int J Sci Educ 30:1531–1550CrossRefGoogle Scholar
  17. Özmen H, Ayas A (2003) Students’ difficulties in understanding conservation of matter in open and closed-system chemical reactions. Chem Educ Res Pract 4:279–290CrossRefGoogle Scholar
  18. Read JR (2004) Children’s misconceptions and conceptual change in science education. Available from
  19. Sewell A (2002) Constructivism and student misconceptions: why every teacher needs to know about them. Aust Sci Teach J 48(4):24–28Google Scholar
  20. Singer JE, Tal R, Wu H (2003) Students’ understanding of the particulate nature of matter. School Sci Math 103(1):28–44CrossRefGoogle Scholar
  21. Sneider CI, Ohadi MM (1998) Unraveling students’ misconceptions about the Earth’s shape and gravity. Sci Educ 82:265–284CrossRefGoogle Scholar
  22. Stavy R (1988) Children’s conception of gas. Int J Sci Educ 10(5):553–560CrossRefGoogle Scholar
  23. Stavy R (1990) Children’s conception of changes in the state of matter: from liquid (or solid) to gas. J Res Sci Teach 27(3):247–266CrossRefGoogle Scholar
  24. Taber K (1997) Students understanding of ionic bonding: molecular versus electrostatic framework. School Sci Rev 78(285):85–95Google Scholar
  25. Taber K (2002) Chemical misconceptions-prevention, diagnosis and eure Volume I: theoretical background. Royal Society of Chemistry, LondonGoogle Scholar
  26. Taber KS (1996) Chlorine is an oxide, heat causes molecules to melt, and sodium reacts badly in chlorine: a survey of the background knowledge of one A-level chemistry class. Sch Sci Rev 78:39–48Google Scholar
  27. Treagust DF (1988) Development and use of diagnostic tests to evaluate students’ misconceptions in science. Int J Sci Educ 10:159–169CrossRefGoogle Scholar
  28. Zoller U (1990) Students understandings and misconceptions in College Freshman chemistry (general and organic). J Res Sci Teach 27(10):1053–1065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Didaktik der ChemieWestf. Wilhelms-Universität MünsterMünsterGermany
  2. 2.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations