Skip to main content

Top-Down Induction of Reduced Ordered Decision Diagrams from Neural Networks

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2011 (ICANN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Included in the following conference series:

  • 2324 Accesses

Abstract

Neural networks offer good generalization performance, noise robustness, and model complexity control. However, neural network mappings are expressed in terms of complicated mathematical functions that are inherently hard to understand. To overcome this limitation rule extraction methods have been proposed. This paper presents a novel method of rule extraction which recursively, in a top-down manner, builds a Reduced Ordered Decision Diagram. The diagram structure allows sharing of nodes, which partially overcomes two problems present in Decision Tree-based rule extraction – the problem of subtree replication and of training set fragmentation. A method for reducing the rule search space by identifying regions in which the network shows similar behavior is presented. Preliminary results of the method performance are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, H.R.: An introduction to binary decision diagrams. Lect. not., IT University of Copenhagen (1999), http://www.itu.dk/people/hra/notes-index.html

  2. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8(6), 373–389 (1995)

    Article  Google Scholar 

  3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 100(35), 677–691 (1986)

    Article  Google Scholar 

  4. Chorowski, J., Zurada, J.: Extracting rules from nns as decision diagrams. IEEE Transactions on Neural Networks (2011), dx.doi.org/10.1109/TNN.2011.2106163

  5. Craven, M.W., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 37–45. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  6. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: Advances in Neural Information Processing Systems, pp. 24–30. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Etchells, T., Lisboa, P.: Orthogonal search-based rule extraction (osre) for trained neural networks: a practical and efficient approach. IEEE Transactions on Neural Networks 17(2), 374–384 (2006)

    Article  Google Scholar 

  8. Fayyad, U., Irani, K.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning, pp. 1022–1027 (1993)

    Google Scholar 

  9. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  10. Fu, L.M.: Rule generation from neural networks. IEEE Transactions on Systems, Man and Cybernetics 24(8), 1114–1124 (1994)

    Article  Google Scholar 

  11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  12. Huysmans, J., Baesens, B., Vanthienen, J.: Using rule extraction to improve the comprehensibility of predictive models. Tech. rep., KU Leuven (2006), http://www.econ.kuleuven.be/fetew/pdf_publicaties/KBI_0612.pdf

  13. Kohavi, R.: Bottom-up induction of oblivious read-once decision graphs: strengths and limitations. In: Proceedings of the Twelfth National Conference on Artificial Intelligence,AAAI 1994, American Association for Artificial Intelligence, Menlo Park, CA, USA, vol. 1, pp. 613–618 (1994)

    Google Scholar 

  14. Kohavi, R., Li, C.H.: Oblivious decision trees graphs and top down pruning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1071–1077. Morgan Kaufmann Publishers Inc, San Francisco (1995)

    Google Scholar 

  15. Krishnan, R., Sivakumar, G., Bhattacharya, P.: A search technique for rule extraction from trained neural networks. Pattern Recognition Letters 20(3), 273–280 (1999)

    Article  Google Scholar 

  16. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design, 1st edn. Springer-Verlag New York, Inc., Secaucus (1998)

    Book  Google Scholar 

  17. Mues, C., Baesens, B., Files, C.M., Vanthienen, J.: Decision diagrams in machine learning: an empirical study on real-life credit-risk data. Expert Systems with Applications 27(2), 257–264 (2004)

    Article  Google Scholar 

  18. Oliveira, A.L., Sangiovanni-Vincentelli, A.: Using the minimum description length principle to infer reduced ordered decision graphs. Machine Learning 25, 23–50 (1996) 10.1023/A:1018344122010

    Google Scholar 

  19. Quinlan, J.R.: C4. 5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  20. Setiono, R., Baesens, B., Mues, C.: Recursive neural network rule extraction for data with mixed attributes. IEEE Transactions on Neural Networks 19(2), 299–307 (2008)

    Article  Google Scholar 

  21. Setiono, R., Liu, H.: Symbolic representation of neural networks. Computer 29(3), 71–77 (1996)

    Article  Google Scholar 

  22. Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., Jong, K.D., Dzeroski, S., Fahlman, S.E., Fisher, D., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger, J., Michalski, R., Mitchell, T., Pachowicz, P., Reich, Y., Vafaie, H., Welde, W.V.D., Wenzel, W., Wnek, J., Zhang, J.: The monk’s problems a performance comparison of different learning algorithms. Tech. rep. (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chorowski, J., Zurada, J.M. (2011). Top-Down Induction of Reduced Ordered Decision Diagrams from Neural Networks. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics