Skip to main content

A RANSAC-Based ISOMAP for Filiform Manifolds in Nonlinear Dynamical Systems –An Application to Chaos in a Dripping Faucet–

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6792))

Abstract

Trajectories generated from a chaotic dynamical system are lying on a nonlinear manifold in the state space. Even if the dimensionality of such a manifold is much lower than that of the full state space, we need many state variables to trace a motion on it as far as we remain to employ the original coordinate, so the resulting expression of the dynamics becomes redundant. In the present study, we employ one of the manifold learning algorithms, ISOMAP, to construct a new nonlinear coordinate that globally covers the manifold, which enables us to describe the dynamics on it as a low-dimensional dynamical system. Here, in order to improve the conventional ISOMAP, we propose an approach based on a combination with RANSAC for pruning the misconnected edges in the neighboring graph. We show that a clear deterministic relationship is extracted from time series of a mass-spring model for the chaotic dripping faucet using the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos–An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  2. Schölkopf, B., Smola, A.J.: Learning with Kernels, Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  4. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for dimensionality Reduction and Data Representation. Neural Comp. 15, 1373–1396 (2003)

    Article  Google Scholar 

  6. Ham, J., Lee, D.D., Mika, S., Schölkopf: A Kernel View of the Dimensionality Reduction of Manifolds. In: Proceedings of the Twenty-first International Conference on Machine Learning ( ICML 2004), Banff, Canada, pp. 369–376 (2004)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Shaw, R.: The Dripping Faucet as a Model of Chaotic System. Aerial Press, Santa Cruz (1984)

    MATH  Google Scholar 

  9. Kiyono, K., Fuchikami, N.: Dripping Faucet Dynamics by an Improved Mass-Spring Model. J. Phys. Soc. Jpn. 68, 3259–3270 (1999)

    Article  Google Scholar 

  10. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Halls, London (1994)

    MATH  Google Scholar 

  11. We use a code of ISOMAP in Matlab Toolbox for Dimensionality Reduction, ( http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html ) by Ph.D. L van der Maatens. We modify his code for implementing our proposing algorithm. We are grateful to him.

  12. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic Bifurcation in a Hodgkin-Huxley Model of Thermally Sensitive Neurons. Chaos 10, 231–239 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hübner, U., Weiss, C.-O., Abraham, N.B., Tang, D.: Lorenz-like Chaos in NH3–FIR Lasers (data set A). In: Weigend, A.S., Gershenfeld, N.A. (eds.) Time-Series Prediction: Forecasting the Future and Understanding the Past, pp. 73–104. Westview Press, Boulder (1993)

    Google Scholar 

  14. Goswami, A., Thuilot, B., Espiau, B.: A Study of the Passive Gait of a Compass-like Biped Robot, Symmetry and Chaos. Int. J. of Robotics Res. 17, 1282–1301 (1998)

    Article  Google Scholar 

  15. Feichtinger, G., Ghezzi, L.L., Piccardi, C.: Chaotic Behavior in an Advertising Diffusion Model. Int. J. Bifurcation and Chaos 5, 255–263 (1995)

    Article  Google Scholar 

  16. Suetani, H., Iba, Y., Aihara, K.: Detecting Generalized Synchronization Between Chaotic Signals: a Kernel-based Approach. J. Phys. A: Math. Gen. 39, 10723–10742 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suetani, H., Akaho, S. (2011). A RANSAC-Based ISOMAP for Filiform Manifolds in Nonlinear Dynamical Systems –An Application to Chaos in a Dripping Faucet–. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21738-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21738-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21737-1

  • Online ISBN: 978-3-642-21738-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics