Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Included in the following conference series:

Abstract

The Medial Axis Transform (MAT) (or skeleton transform) is one of the most studied shape representation techniques with established advantages for general 2D shape recognition. Embedding local boundary information in the skeleton, in particular, has been shown to improve 2D shape recognition capability to state of the art levels. In this paper we present a visual pathway for extracting an analogous to the MAT skeleton abstraction of shape that also contains local boundary curvature information. We refer to this structure with the term curvature-skeleton. The proposed architecture is inspired by the biological findings regarding the cortical neurons of the visual cortex and their special purpose Receptive Fields (RFs). Points of high curvature are initially identified and subsequently combined by means of a visual pathway that achieves an analogous to the MAT abstraction of shape but also embeds in the skeleton local curvature information of the shape’s boundary. We present experimental results illustrating that such an abstraction can improve the recognition capability of multi layered neural network classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hubel, D.H., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)

    Article  Google Scholar 

  2. Raftopoulos, K.A., Papadakis, N., Ntalianis, K.S.: Visual pathways for detection of landmark points. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 728–739. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Goodale, M.A., Meenan, J.P., Buelthoff, H.H., Nicolle, D.A., Murphy, K.J., Racicot, C.I.: Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biol. 4, 604–610 (1994)

    Article  Google Scholar 

  4. Ungerleider, L.G., Courtney, S.M., Haxby, J.V.: A neural system for human visual working memory. Proc. Natl. Acad. Sci. USA 95, 883–890 (1998)

    Article  Google Scholar 

  5. Dobbins, A., Zucker, S.W., Cynader, M.S.: Endstopped neurons in the visual cortex as a substrate for calculating curvature. Nature 329, 438–441 (1987)

    Article  Google Scholar 

  6. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)

    Article  Google Scholar 

  7. Bookstein, F.L.: Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Im. Anal. 1, 225–243 (1996)

    Article  Google Scholar 

  8. Berretti, S., Bimbo, A.D., Pala, P.: Retrieval by shape similarity with perceptual distance and effective indexing. IEEE Trans on Multimedia 2, 225–239 (2000)

    Article  Google Scholar 

  9. Mokharian, F.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 14, 789–805 (1992)

    Article  Google Scholar 

  10. Dudek, G., Tsotsos, J.K.: Shape representation and recognition from multiscale curvature. Comput. Vis. Image Understand. 68, 170–189 (1997)

    Article  Google Scholar 

  11. Super, B.J.: Fast correspondence-based system for shape-retrieval. Patt. Recog. Lett. 24, 217–225 (2004)

    Article  Google Scholar 

  12. Blum, H.: A transformation for extracting new descriptors of shape. Models for the Perception of Speech and Visual Forms (1967)

    Google Scholar 

  13. Davis, L.: Two-dimensional shape representation. Academic Press, London (1986)

    Google Scholar 

  14. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Transactions on PAMI 26, 550–571 (2004)

    Article  Google Scholar 

  15. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: Shape at its absolute scale. IEEE Transactions on PAMI 30, 2188–2203 (2008)

    Article  Google Scholar 

  16. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Transactions on PAMI 30, 1282–1292 (2008)

    Article  Google Scholar 

  17. Yang, X.W., Bai, X., Latecki, L.J., Tu, Z.W.: Improving shape retrieval by learning graph transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 788–801. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Wang, J., Athitsos, V., Sclaroff, S., Betke, M.: Detecting objects of variable shape structure with hidden state shape models. IEEE Transactions on PAMI 30, 477–492 (2008)

    Article  Google Scholar 

  19. Raftopoulos, K.A., Papadakis, N., Ntalianis, K., Kollias, S.D.: A visual pathway for shape-based invariant classification of gray scale images. Integr. Comput.-Aided Eng. 14, 365–378 (2007)

    Google Scholar 

  20. Haykin, S.: Neural Networks: A Comprehensive Foundation. PrenticeHall, Englewood Cliffs (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raftopoulos, K.A., Kollias, S.D. (2011). Visual Pathways for Shape Abstraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics