Skip to main content

Learning Curves for Gaussian Processes via Numerical Cubature Integration

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Abstract

This paper is concerned with estimation of learning curves for Gaussian process regression with multidimensional numerical integration. We propose an approach where the recursion equations for the generalization error are approximately solved using numerical cubature integration methods. The advantage of the approach is that the eigenfunction expansion of the covariance function does not need to be known. The accuracy of the proposed method is compared to eigenfunction expansion based approximations to the learning curve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Hagan, A.: Curve fitting and optimal design for prediction (with discussion). Journal of the Royal Statistical Society B 40(1), 1–42 (1978)

    MATH  Google Scholar 

  2. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2006)

    Google Scholar 

  3. Bishop, C.M.: Pattern recognition and machine learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  4. Opper, M.: Regression with Gaussian processes: Average case performance. In: Theoretical Aspects of Neural Computation. Springer, Heidelberg (1997)

    Google Scholar 

  5. Opper, M., Vivarelli, F.: General bounds on bayes errors for regression with gaussian processes. In: NIPS, vol. 11, pp. 302–308. The MIT Press, Cambridge (1999)

    Google Scholar 

  6. Sollich, P.: Approximate learning curves for Gaussian processes. In: Proceedings of ICANN 1999, pp. 437–442 (1999)

    Google Scholar 

  7. Sollich, P.: Learning curves for Gaussian processes. In: NIPS, vol. 11. The MIT Press, Cambridge (1999)

    Google Scholar 

  8. Sollich, P., Halees, A.: Learning curves for Gaussian process regression: Approximations and bounds. Neural Computation 14, 1393–1428 (2002)

    Article  MATH  Google Scholar 

  9. Williams, C.K.I., Vivarelli, F.: Upper and lower bounds on the learning curve for Gaussian processes. Machine Learning 40, 77–102 (2000)

    Article  Google Scholar 

  10. Sollich, P., Williams, C.: Using the equivalent kernel to understand Gaussian process regression. In: NIPS, vol. 17, pp. 1313–1320. MIT Press, Cambridge (2005)

    Google Scholar 

  11. Van Trees, H.L.: Detection, Estimation, and Modulation Theory Part I. John Wiley & Sons, New Yark (1968)

    MATH  Google Scholar 

  12. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

  13. Malzahn, D., Opper, M.: Learning curves for Gaussian process regression: A framework for good approximations. In: NIPS, vol. 13, MIT Press, Cambridge (2001)

    Google Scholar 

  14. Malzahn, D., Opper, M.: A variational approach to learning curves. In: NIPS, vol. 14, MIT Press, Cambridge (2002)

    Google Scholar 

  15. Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control 45, 910–927 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wu, Y., Hu, D., Wu, M., Hu, X.: A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing 54, 2910–2921 (2006)

    Article  Google Scholar 

  17. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Transactions on Automatic Control 54, 1254–1269 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Särkkä, S., Hartikainen, J.: On Gaussian optimal smoothing of non-linear state space models. IEEE Transactions on Automatic Control 55, 1938–1941 (2010)

    Article  MathSciNet  Google Scholar 

  19. Curtain, R.: A survey of infinite-dimensional filtering. SIAM Review 17(3), 395–411 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ray, W.H., Lainiotis, D.G.: Distributed Parameter Systems. Dekker, New York (1978)

    MATH  Google Scholar 

  21. Cools, R.: Constructing cubature formulae: The science behind the art. Acta Numerica 6, 1–54 Cambridge University Press, Cambridge (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Särkkä, S. (2011). Learning Curves for Gaussian Processes via Numerical Cubature Integration. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics