Skip to main content

Optimization Strategies for Restricted Candidate Lists in Field Service Scheduling

  • Chapter
Intelligent Computational Optimization in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 366))

Abstract

Field service scheduling (FSS) is a large class of practical optimization problems combining features of the vehicle routing problem (VRP), scheduling problems and the general assignment problem (GAP). In some cases the problem reduces to well known variants of VRP, while other, more common circumstances give rise to a distinct set of optimization problems that have so far received very little attention in the literature. In this chapter we show how strategies for restricted candidate lists (RCL) – methods for pre-calculating and contextualizing the candidate list reduction procedures within a context of a generic optimization framework, can be used to efficiently solve a wide spectrum of FSS instances in a real-life industrial environment. A comparison of results obtained using a greedy randomized adaptive search procedure (GRASP) meta-heuristic with and without the use of certain RCL strategies is presented as it applies to specific variants of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Mitzenmacher, M.: Average-case analyses of first fit and random fit bin packing. Random Struct. Algorithms 16(3), 240–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christopher Beck, J., Prosser, P., Selensky, E.: Graph transformations for the vehicle routing and job shop scheduling problems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, Springer, Heidelberg (2002)

    Google Scholar 

  3. Beck, J.C., Prosser, P., Selensky, E.: On the Reformulation of Vehicle Routing Problems and Scheduling Problems. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 282–289. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Christopher Beck, J., Prosser, P., Selensky, E.: A case study of mutual routing-scheduling reformulation. J. Scheduling 9(5), 469–491 (2006)

    Article  MATH  Google Scholar 

  5. Beck, J.C., Prosser, P., Selensky, E.: Vehicle routing and job shop scheduling: What’s the difference? In: ICAPS, pp. 267–276 (2003)

    Google Scholar 

  6. Beniaminy, I., Yellin, D., Zahavi, U., Zerdin, M.: When the rubber meets the road: Bio-inspired field service scheduling in the real world. In: Pereira, F.B., Tavares, J. (eds.) Bio-inspired Algorithms for the Vehicle Routing Problem, pp. 191–213. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Bertsimas, D., Gamarnik, D.: Asymptotically optimal algorithms for job shop scheduling and packet routing. Journal of Algorithms, 296–318 (1999)

    Google Scholar 

  8. Borgulya, I.: An algorithm for the capacitated vehicle routing problem with route balancing. Central European Journal of Operations Research 16(4), 331–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: SODA 2000: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, pp. 213–222 (2000)

    Google Scholar 

  10. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  11. Dorigo, M., Stützle, T.: Ant Colony Optimization (Bradford Books). The MIT Press, Cambridge (2004)

    Book  Google Scholar 

  12. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, M.L., Jaikumar, R.: A generalized assignment heuristic for vehicle routing. Networks 11(2), 109–124 (1981)

    Article  MathSciNet  Google Scholar 

  14. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for maximum general assignment problems. In: SODA 2006: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 611–620 (2006)

    Google Scholar 

  15. Gambardella, L.C., Taillard, E., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. Technical report, IDSIA, Lugano, Switzerland (1999)

    Google Scholar 

  16. Garey, M.R., Graham, R.L., Ullman, J.D.: An analysis of some packing algorithms. Combinatorial Algorithms, 39–47 (1973)

    Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)

    Google Scholar 

  18. Hartigan, J.A.: Clustering Algorithms. John Wiley & Sons, Inc., New York (1975)

    MATH  Google Scholar 

  19. Nutov, Z., Beniaminy, I., Yuster, R.: A (1-1/e)-approximation algorithm for the generalized assignment problem. Oper. Res. Lett. 34(3), 283–288 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Resende, M.G.C.: Metaheuristic hybridization with GRASP. In: Chen, Z.-L., Raghavan, S. (eds.) Tutorials in Operations Research. Inst. for Mgmt Sci. and O.R. INFORMS (2008)

    Google Scholar 

  21. Santos, H.G., Ochi, L.S., Souza, M.J.F.: A tabu search heuristic with efficient diversification strategies for the class/teacher timetabling problem. J. Exp. Algorithmics 10, 2–9 (2005)

    Article  Google Scholar 

  22. Spieksma, F.: On the approximabilty of an interval scheduling problem. Journal of Scheduling 2, 215–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stein, R., Dhar, V.: Satisfying customers: Intelligently scheduling high volume service requests. AI Expert 12, 20–27 (1994)

    Google Scholar 

  24. El-Ghazali, T.: Metaheuristics: From Design to Implementation. Wiley Publishing, Chichester (2009)

    MATH  Google Scholar 

  25. Tan, K.C., Lee, L.H., Zhu, K.Q., Ou, K.: Heuristic methods for vehicle routing problem with time windows. Artificial Intelligence in Engineering 15 (3), 281–295 (2001)

    Article  Google Scholar 

  26. Toth, P., Vigo, D. (eds.): The vehicle routing problem. Society for Industrial and Applied Mathematics (2001)

    Google Scholar 

  27. Vigoroso, M.W.: Field service optimization part 2: Synchronizing supply and demand in right time. Aberdeen Group Benchmark Report (2005)

    Google Scholar 

  28. Wagstaff, K., Basu, S., Davidson, I.: When is constrained clustering beneficial, and why? In: AAAI (2006)

    Google Scholar 

  29. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: ICML, pp. 577–584 (2001)

    Google Scholar 

  30. Weigel, D., Cao, B.: Applying GIS and OR techniques to solve sears technician-dispatching and home delivery problems. Interfaces 29 (1), 113–130 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Žerdin, M., Gibrekhterman, A., Zahavi, U., Yellin, D. (2011). Optimization Strategies for Restricted Candidate Lists in Field Service Scheduling. In: Köppen, M., Schaefer, G., Abraham, A. (eds) Intelligent Computational Optimization in Engineering. Studies in Computational Intelligence, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21705-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21705-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21704-3

  • Online ISBN: 978-3-642-21705-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics