Homotopy-Theoretic Models of Type Theory

  • Peter Arndt
  • Krzysztof Kapulkin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6690)


We introduce the notion of a logical model category, which is a Quillen model category satisfying some additional conditions. Those conditions provide enough expressive power that one can soundly interpret dependent products and sums in it while also having a purely intensional interpretation of the identity types. On the other hand, those conditions are easy to check and provide a wide class of models that are examined in the paper.


Model Category Type Theory Weak Equivalence Grothendieck Topology Weak Factorization System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AK11]
    Arndt, P., Kapulkin, C.: ∏- and ∑-types in homotopy theoretic models of type theory (work in progress)Google Scholar
  2. [AW09]
    Awodey, S., Warren, M.A.: Homotopy theoretic models of identity types. Math. Proc. of the Cam. Phil. Soc. (2009)Google Scholar
  3. [Awo10]
    Awodey, S.: Type theory and homotopy (2010) (preprint)Google Scholar
  4. [Bar10]
    Barwick, C.: On left and right model categories and left and right bousfield localizations. Homology, Homotopy and Applications 12(2), 245–320 (2010)CrossRefzbMATHGoogle Scholar
  5. [Bat98]
    Batanin, M.A.: Monoidal globular categories as a natural environment for the theory of weak n-categories. Adv. Math. 136(1), 39–103 (1998)CrossRefzbMATHGoogle Scholar
  6. [Cis02]
    Cisinski, D.-C.: Théories homotopiques dans les topos. J. Pure Appl. Algebra 174(1), 43–82 (2002); MR1924082 (2003i:18021)CrossRefzbMATHGoogle Scholar
  7. [Cis06]
    Cisinski, D.-C.: Les préfaisceaux comme modèles des types d’homotopie. Astérisque, (308), xxiv+390 (2006); MR 2294028 (2007k:55002)Google Scholar
  8. [Con72]
    Conduché, F.: Au sujet de l’existence d’adjoints à droite aux foncteurs “image réciproque” dans la catégorie des catégories. C. R. Acad. Sci. Paris Sér. A-B 275, A891–A894 (1972)zbMATHGoogle Scholar
  9. [Gar08]
    Garner, R.: 2-dimensional models of type theory. Mathematical Structures in Computer Science (2008) (to appear)Google Scholar
  10. [GG08]
    Gambino, N., Garner, R.: The identity type weak factorisation system. Theoretical Computer Science 409(1), 94–109 (2008)CrossRefzbMATHGoogle Scholar
  11. [Gir64]
    Giraud, J.: Méthode de la descente. Mémoires de la Soc. Math. de France 2 (1964)Google Scholar
  12. [GK09]
    Gambino, N., Kock, J.: Polynomial functors and polynomial monads (to appear)Google Scholar
  13. [GvdB08]
    Garner, R., van den Berg, B.: Types are weak ω-groupoids (2008) (submitted)Google Scholar
  14. [GvdB10]
    Garner, R., van den Berg, B.: Topological and simplicial models of identity types (2010) (submitted)Google Scholar
  15. [Hir03]
    Hirschhorn, P.S.: Model categories and their localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003), MR 1944041 (2003j:18018)zbMATHGoogle Scholar
  16. [Hov99]
    Hovey, M.: Model categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)zbMATHGoogle Scholar
  17. [HS98]
    Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In: Twenty-Five Years of Constructive Type Theory (Venice, 1995). Oxford Logic Guides, vol. 36, pp. 83–111. Oxford Univ. Press, New York (1998)Google Scholar
  18. [Kap10]
    Kapulkin, C.: Homotopy theoretic models of type theory, Masters Thesis (University of Warsaw) (2010)Google Scholar
  19. [Lei04]
    Leinster, T.: Higher operads, higher categories. London Mathematical Society Lecture Note Series, vol. 298. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  20. [Lum08]
    Lumsdaine, P.L.: Weak ω-categories from intensional type theory, extended version (2008)Google Scholar
  21. [Lum10]
    Lumsdaine, P.L.: Higher categories from type theories, Ph.D. thesis, CMU (2010)Google Scholar
  22. [Lur09]
    Lurie, J.: Higher topos theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  23. [ML72]
    Martin-Löf, P.: An intuitionstic theory of types, Technical Report, University of Stockholm (1972)Google Scholar
  24. [MV99]
    Morel, F., Voevodsky, V.: A 1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. (1999) (90), 45–143 (2001); MR 1813224 (2002f:14029)Google Scholar
  25. [NPS90]
    Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s type theory. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  26. [Qui67]
    Quillen, D.: Homotopical algebra. Lecture Notes in Mathematics, vol. 43. Springer, Heidelberg (1967)zbMATHGoogle Scholar
  27. [Rez02]
    Rezk, C.: Every homotopy theory of simplicial algebras admits a proper model. Topology Appl. 119(1), 65–94 (2002); MR 1881711 (2003g:55033)CrossRefzbMATHGoogle Scholar
  28. [See84]
    Seely, R.A.G.: Locally cartesian closed categories and type theory. Math. Proc. Cambridge Philos. Soc. 95(1), 33–48 (1984)CrossRefzbMATHGoogle Scholar
  29. [SU06]
    Sørensen, M.H., Urzyczyn, P.: Lectures on Curry–Howard isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149. Eslevier, Amsterdam (2006)zbMATHGoogle Scholar
  30. [Voe98]
    Voevodsky, V.: \(\bold A^1\)-homotopy theory. In: Proceedings of the International Congress of Mathematicians, Berlin, vol. I, pp. 579–604 (electronic) (1998); MR 1648048 (99j:14018)Google Scholar
  31. [War08]
    Warren, M.A.: Homotopy theoretic aspects of constructive type theory, Ph.D. thesis, CMU (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Arndt
    • 1
  • Krzysztof Kapulkin
    • 2
  1. 1.University of OsloOsloNorway
  2. 2.University of PittsburghPittsburghUSA

Personalised recommendations