Advertisement

Abstract

The field of rewriting is broadly concerned with manipulating representations of objects so that we go from a larger representation to a smaller representation. The field of rewriting has contributed some fundamental results within the computer science discipline. This extended abstract explores a few impactful applications of rewriting in the areas of (a) design of algorithms, (b) formal modeling and analysis, and (c) term rewriting and theorem proving.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmair, L.: Canonical Equational Proofs. Birkhäuser, Basel (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: A constraint-based completion procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. of Logic and Computation 4, 217–247 (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bachmair, L., Tiwari, A.: D-bases for polynomial ideals over commutative noetherian rings. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 113–127. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. of Automated Reasoning 31(2), 129–168 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Buchberger, B.: A critical-pair completion algorithm for finitely generated ideals in rings. In: Börger, E., Rödding, D., Hasenjaeger, G. (eds.) Rekursive Kombinatorik 1983. LNCS, vol. 171, pp. 137–161. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  7. 7.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. J. of the ACM 52(3), 365–473 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Clavel, M., et al.: Maude: Specification and Programming in Rewriting Logic. In: SRI International, Menlo Park, CA (1999), http://maude.csl.sri.com/manual/
  11. 11.
    Hlavacek, W.S., et al.: Rules for modeling signal-transduction systems. Sci. STKE 344 (2006), PMID: 16849649Google Scholar
  12. 12.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Physics 22, 403–434 (1976)CrossRefGoogle Scholar
  13. 13.
    Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)CrossRefGoogle Scholar
  14. 14.
    Lincoln, P., Tiwari, A.: Symbolic systems biology: Hybrid modeling and analysis of biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 660–672. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis? Nature Biotechnology 28, 245–248 (2010)CrossRefGoogle Scholar
  16. 16.
    Priami, C.: Algorithmic systems biology. CACM 52(5), 80–88 (2009)CrossRefGoogle Scholar
  17. 17.
    Talcott, C.L.: Pathway logic. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing pathways using SAT-based approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ashish Tiwari
    • 1
  1. 1.SRI InternationalMenlo ParkUSA

Personalised recommendations