Skip to main content

Bacterial Symbionts of Corals and Symbiodinium

  • Chapter
  • First Online:
Beneficial Microorganisms in Multicellular Life Forms

Abstract

Multipartite symbiosis in corals is an exciting area of research that is not well studied. Research to date indicates that bacterial associates of corals may protect the host by producing antibiotics and other beneficial compounds and nutrients, and are likely to play a role in the stability of the coral animal as a whole. These bacterial mutualists communicate with the host and host-associated microbes to regulate activities on the coral surface. The influence of bacteria in association with the coral algal endosymbiont (Symbiodinium spp.) and/or the coral host can be very specific and can involve biochemical interactions that affect the behavior of the algal symbiont. This defines a complex symbiosis between the coral, Symbiodinium, and associated bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends Ecol Evol 25(4):233–240

    Article  PubMed  Google Scholar 

  • Alagely A, Krediet CJ, Ritchie KB, Teplitski M (2011) Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J. doi:10.1038/ismej.2011.45

  • Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3(6):380–396

    Article  PubMed  CAS  Google Scholar 

  • Anderson RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Anderson RA (ed) Algal culturing techniques. Elsevier, New York, pp 124–125

    Google Scholar 

  • Apprill A, Marlow HQ, Martindale MQ, Rappe MS (2009) The onset of microbial associations in the coral Pocillopora meandrina. ISME J 3:685–699

    Article  PubMed  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2008) Coral bleaching: the role of the host. Trends Ecol Evol 24(1):16–20

    Article  PubMed  Google Scholar 

  • Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G et al (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol 33:559–569

    Article  PubMed  CAS  Google Scholar 

  • Castillo I, Lodeiros C, Nunez M, Campos I (2001) In vitro evaluation of antibacterial substances produced by bacteria isolated from different marine organisms. Rev Biol Trop 49(3–4):1213–1222

    PubMed  CAS  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  PubMed  CAS  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  PubMed  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126(3):453–465

    Article  PubMed  CAS  Google Scholar 

  • Dixon GK, Syrett PJ (1988) The growth of dinoflagellates in laboratory cultures. New Phytol 109:297–302

    Article  Google Scholar 

  • Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution. Bioessays 32:571–580

    Article  PubMed  CAS  Google Scholar 

  • Geffen Y, Rosenberg E (2005) Stress-induced rapid release of antibacterials by scleractinian corals. Mar Biol 146:931–935

    Article  Google Scholar 

  • Geng HF, Belas R (2010) Molecular mechanisms underlying roseobacter-phytoplankton symbioses. Curr Opin Biotechnol 21(3):332–338

    Article  PubMed  CAS  Google Scholar 

  • González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, Schmitt R, Buchan A, Fuhrman JA, Kiene RP, Moran MA (2003) Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269

    Article  PubMed  Google Scholar 

  • Kellogg CA (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88

    Article  CAS  Google Scholar 

  • Kelman D, Kashman K, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of Red Sea corals. Mar Biol 149:357–363

    Article  CAS  Google Scholar 

  • Kelman D, Kashman K, Hill RT, Rosenberg E, Loya Y (2009) Chemical warfare in the sea: the search for antibiotics from Red Sea Corals and sponges. Pure Appl Chem 81(6):1113–1121

    Article  CAS  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    Article  PubMed  Google Scholar 

  • Krediet C, Teplitski M, Ritchie KB (2009a) Catabolite control of enzyme induction and biofilm formation in a coral pathogen Serratia marcescens PDL100. Dis Aquat Org 87:57–66

    Article  PubMed  CAS  Google Scholar 

  • Krediet CJ, Ritchie KB, Cohen M, Lipp E, Sutherland K, Teplitski M (2009b) Utilization of mucus from the coral Acropora palmata by environmental and pathogenic isolates of Serratia marcescens. Appl Environ Microbiol 75(12):3851–3858

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Lambert G, Anderson RA, Coffroth MA, Galbraith DW (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886

    Article  CAS  Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    Article  PubMed  CAS  Google Scholar 

  • Marquis CP, Baird AH, de Nys R, Holmstrom C, Koziumi N (2005) An evaluation of the antimicrobial properties of the eggs of 11 species of scleractinian corals. Coral Reefs 24:248–253

    Article  Google Scholar 

  • McDaniel LE, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50

    Article  PubMed  CAS  Google Scholar 

  • Miller TR, Belas R (2004) Dimethylsulfoniopropionate metabolism by Pfiesteria-associated Roseobacter spp. Appl Environ Microbiol 70(6):3383–3391

    Article  PubMed  CAS  Google Scholar 

  • Negri AP, Webster NS, Hill RT, Heyward AJ (2001) Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose coraline algae. Mar Ecol Prog Ser 223:121–131

    Article  Google Scholar 

  • Neilson AT, Tolker-Neilsen K, Barken K, Molin S (2000) Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2:59–68

    Article  Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  PubMed  CAS  Google Scholar 

  • Nikoh N, McCutcheon JP, Kudo T, Miyagishima S, Moraln NA, Nakabachi A (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genetics 6(2):e1000827. doi:10.1371/journal.pgen.1000827

    Article  PubMed  Google Scholar 

  • Nissimov J, Rosenberg E, Munn CB (2009) Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett 292:210–215

    Article  PubMed  CAS  Google Scholar 

  • Olsen ND, Ainsworth TD, Gates RD, Takabayashi M (2009) Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol 371:140–146

    Article  Google Scholar 

  • Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579–589

    Article  PubMed  CAS  Google Scholar 

  • Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75(11):3492–3501

    Article  PubMed  CAS  Google Scholar 

  • Rajamani S, Bauer WD, Robinson JB, Farrow JM 3rd, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant Microbe Interact 21(9):1184–1192

    Article  PubMed  CAS  Google Scholar 

  • Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736

    Article  PubMed  CAS  Google Scholar 

  • Rassmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904

    Article  Google Scholar 

  • Ritchie K (2006) Regulation of marine microbes by coral mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Ritchie KB Smith, GW (1997) Physiological comparisons of bacteria from various species of scleractinian corals. In: Proceedings of the 8th international symposium for reef studies, vol 1, Panama, pp 521–526

    Google Scholar 

  • Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg, Loya (eds) Coral health and disease. Springer, Berlin, pp 259–263

    Chapter  Google Scholar 

  • Ritchie KB, Kiel C, Thornton S, Collingwood A, Hutchins P, Schell J, Myers R, Norman C, Thurmond J (In Prep) Identification of bacterial groups associated with Symbiodinium cultures

    Google Scholar 

  • Ritson-Williams, Raphael, Paul, Valerie J, Arnold SN, Steneck RS (2010) Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A.cervicornis. Coral Reefs 29(1):71–81

    Article  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksii. Coral Reefs 20:85–91

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microbes in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  PubMed  CAS  Google Scholar 

  • Sharp KH, Ritchie KB, Schupp P, Ritson-Williams R, Paul VJ (2010) Bacterial acquisition by gametes and juveniles from several broadcast spawning coral species. PLoS ONE 5(5):e10898. doi:10.1371/journal.pone.0010898

    Article  PubMed  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2008) Coral mucus bacteria as a source for antibacterial activity. In: Proceedings of the 11th international coral reef symposium, Lauderdale, FL, pp 257–258

    Google Scholar 

  • Shottner S, Hoffman F, Wild C, Rapp HT, Boetius A, Rametter A (2009) Inter- and intra-habitat bacterial diversity associated with cold-water corals. ISME J 3:756–759

    Article  Google Scholar 

  • Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, Rasmussen TB, Bjarnsholt T, Tolker-Nielsen T, Hoiby N, Givskov M (2008) Effects of antibiotics on quorum sensing in Psuedomonas aeruginosa. Antimicrob Agent Chemother 52(10):3648–3663

    Article  CAS  Google Scholar 

  • Slightom RN, Buchan A (2009) Surface colonization by marine Roseobacters: integrating genotype and phenotype. Appl Environ Microbiol 75(19):6027–6037

    Article  PubMed  CAS  Google Scholar 

  • Tait K, Hutchison Z, Thompson FL, Munn CB (2010) Quorum sensing signal production and inhibition by coral-associated vibrios. Environ Microbiol Rep 2(1):145–150

    Article  Google Scholar 

  • Teplitski M, Ritchie KB (2009) How feasible is the biological control of coral disease? Trend Ecol Evol 24(7):378–385

    Article  Google Scholar 

  • Teplitski M, Mathesius U, Rumbaugh KP (2011) Perception and degradation of N-acyl homoserine lactone quorum sensing signals by mammalian and plant cells. Chem Rev 111(1):100–116

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Dobler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol 60:255–280

    Article  PubMed  Google Scholar 

  • Webster NS, Smith LD et al (2004) Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70(2):1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Weise VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR (2008) Cell biology in model systems as the key to understanding corals. Trend Ecol Evol 23(7):369–376

    Article  Google Scholar 

  • Yi H, Woon Lim Y, Chun J (2007) Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 57:815–819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge preliminary experimental input from Mote Marine Laboratory student interns Patrick Hutchins, Courtney Kiel, Stephanie Thornton, Roxanna Myers, Carmel Norman, Andrew Collingwood, and Jamie Schell. Todd LaJeunesse and Scott Santos kindly provided Symbiodinium culture information and strains. I thank Koty Sharp, Garriet Smith, John H. Paul, Max Teplitski, John Pringle, Eugene Rosenberg, and Joel Thurmond for their helpful discussions and/or input on this manuscript. Funding for this contribution was provided by Florida Protect Our Reefs Plate Grants and the Dart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim B. Ritchie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritchie, K.B. (2012). Bacterial Symbionts of Corals and Symbiodinium. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_9

Download citation

Publish with us

Policies and ethics