Skip to main content

Microbial Protection Against Plant Disease

  • Chapter
  • First Online:
Beneficial Microorganisms in Multicellular Life Forms

Abstract

The growing demand for food due to the expansion of world population necessitates development of practices that will enable high-yield, disease-free agriculture, with minimal use of chemical pesticides. Biocontrol-associated microorganisms can inhibit disease by either directly antagonizing phytopathogens or by stimulating a state of induced resistance in plants. Certain agronomic practices such as amendment of compost and biochar to soil curb plant disease by stimulating abundance and activity of indigenous soil and root-associated biocontrol agents (BCAs) resulting in so called “suppressive soils.” Over the past half century, a multitude of attempts have been made to implement both BCAs and agronomic agricultural practices as plant protection strategies. Nonetheless, the use of these strategies in large-scale commercial agriculture is still very limited due to restricted efficacy and consistency. The following chapter focuses on well-documented BCAs and their modes of action, delineates microbial-associated biocontrol-inducing agronomic practices, and discusses future directions required for applying biocontrol in high-yield sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitch RB, Martin GB (2004) Strategies used by bacterial pathogens to suppress plant defenses. Curr Opin Plant Biol 7:356–64

    Article  PubMed  CAS  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189

    Article  Google Scholar 

  • Alexander BJR, Stewart A (2001) Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). N Z J Crop Hortic Sci 29:159–169

    Article  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017

    Article  PubMed  CAS  Google Scholar 

  • Baker R (1968) Mechanisms of biological control of soil-borne pathogens. Annu Rev Phytopathol 6:263–294

    Article  Google Scholar 

  • Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Boehm MJ, Madden LV, Hoitink HAJ (1993) Effect of organic matter decomposition level on bacterial species diversity and compositin in relationship to Pythium damping-off severity. Appl Environ Microbiol 59:4171–4179

    PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  PubMed  CAS  Google Scholar 

  • Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172

    Article  PubMed  CAS  Google Scholar 

  • Bradley GG, Punja ZK (2010) Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber. Can J Microbiol 56:896–905

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants- with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  PubMed  CAS  Google Scholar 

  • Cytryn E, Kautsky L, Ofek M, Mandelbaum RT, Minz D (2011) Short-term structure and functional changes in bacterial community composition following amendment with biosolids compost Appl Soil Ecol 48:160–167

    Google Scholar 

  • de Brito AM, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61:194199

    Google Scholar 

  • De Maeyer K, D’aes J, Hua GK, Perneel M, Vanhaecke L, Noppe H, Höfte M (2011) N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere. Microbiology 157:459–72

    Article  PubMed  Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30:7–17

    Article  PubMed  Google Scholar 

  • Elad Y (2003) Biocontrol of foliar pathogens: mechanisms and application. Commun Agric Appl Biol Sci 68:17–24

    PubMed  CAS  Google Scholar 

  • Elad Y, Rav David D, Meller Harel Y, Borenshtein M, Ben Kalifa H, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Gerhardson B (2010) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. E J Plant Path 119:329–339

    Article  CAS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 12:812–818

    Article  Google Scholar 

  • Graber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, Rav David D, Tsechansky L, Borenshtein M, Elad I (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93–106

    Article  Google Scholar 

  • Green SJ, Inbar E, Michel FC Jr, Hadar Y, Minz D (2006) Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983

    Article  PubMed  CAS  Google Scholar 

  • Gunasinghe WK, Karunaratne AM (2009) Interactions of Colletotrichum musae and Lasiodiplodia theobromae and their biocontrol by Pantoea agglomerans and Flavobacterium sp in expression of crown rot of “Embul” banana. Biocontrol 54:587–596

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Hebbar P, Berge O, Heulin T, Singh SP (1991) Bacterial antagonists of sunflower (Helianthus-Annuus L) fungal pathogens. Plant Soil 133:131–140

    Article  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Hoitink HA, Madden LV, Dorrance AE (2006) Systemic resistance Induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil Organic matter quality. Phytopathology 96:186–189

    Article  PubMed  CAS  Google Scholar 

  • Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant Microbe Interact 24:352–358

    Article  PubMed  CAS  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 102:17136–1741

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Ko HS, Jin RD, Krishnan HB, Lee SB, Kim KY (2009) Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 59:608–615

    Article  PubMed  CAS  Google Scholar 

  • Kolton M, Meller-Harel Y, Pasternak Z, Graber ER, Tsechansky L, Rav David D, Silber A, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Envir Microbiol 77:4924–4930

    Article  CAS  Google Scholar 

  • Kyselková M, Kopecký J, Frapolli M, Défago G, Ságová-Marecková M, Grundmann GL, Moënne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Liu X, Bimerew M, Ma Y, Müller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Llorca LV, Gómez-Vidal S, Monfort E, Larriba E, Casado-Vela J, Elortza F, Jansson HB, Salinas J, Martín-Nieto J (2010) Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genet Biol 47:342–351

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Dekkers (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Mavrodi DV, Joe A, Mavrodi OV, Hassan KA, Weller DM, Paulsen IT, Loper JE, Alfano JR, Thomashow LS (2011) Structural and functional analysis of the type III secretion system from Pseudomonas fluorescens Q8r1–96. 193:177–189

    Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  PubMed  CAS  Google Scholar 

  • Mazzola M, Gu YH (2002) Wheat genotype-specific induction of soil microbial communities suppressive to disease incited by Rhizoctonia solani anastomosis group (AG)-5 and AG-8. Phytopathology 92:1300–1307

    Article  PubMed  Google Scholar 

  • McSpadden Gardener BB (2007) Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97:221–226

    Article  PubMed  Google Scholar 

  • Meller-Harel Y, Pasternak Z, Graber ER, Tsechansky L, Rav David D, Silber A, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Envir Microbiol. 77:4924–4930

    Google Scholar 

  • Meyer JB, Lutz MP, Frapolli M, Péchy-Tarr M, Rochat L, Keel C, Défago G, Maurhofer M (2010) Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Appl Environ Microbiol 76:6196–6204

    Article  PubMed  CAS  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569

    Article  PubMed  CAS  Google Scholar 

  • Penyalver R, Oger PM, Su S, Alvarez B, Salcedo CI, López MM, Farrand SK (2009) The S-adenosyl-L-homocysteine hydrolase gene ahcY of Agrobacterium radiobacter K84 is required for optimal growth, antibiotic production, and biocontrol of crown gall disease. Mol Plant Microbe Interact 22:713–724

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y (2010) ER quality control of immune receptors and regulators in plants. Cell Microbiol 12:716–724

    Article  PubMed  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:1–23

    Article  Google Scholar 

  • Smith VA, Hindley J (1978) Effect of agrocin 84 on attachment of Agrobacterium tumefaciens to cultured tobacco cells. Nature 276:498–500

    Article  Google Scholar 

  • Strange RN (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  PubMed  CAS  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol. 193:275–86

    Article  PubMed  CAS  Google Scholar 

  • van den Bosch F, Gilligan CA (2008) Models of fungicide resistance dynamics. Annu Rev Phytopathol 46:123–147

    Article  PubMed  Google Scholar 

  • van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PA, van der Heijdt WH, Wendehenne D, Pugin A (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact 21:1609–1621

    Article  PubMed  Google Scholar 

  • van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  PubMed  CAS  Google Scholar 

  • Weller D (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller D (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Williams P (2007) Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Han DY, Dick WA, Davis KR, Hoitink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:450–455

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew TW, Teng PS, Wang Z, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddie Cytryn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cytryn, E., Kolton, M. (2012). Microbial Protection Against Plant Disease. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_8

Download citation

Publish with us

Policies and ethics