Skip to main content

Impact of Intestinal Microbial Communities upon Health

  • Chapter
  • First Online:
Beneficial Microorganisms in Multicellular Life Forms

Abstract

The microbial community of the human large intestine plays an important role in nutrition and health. Molecular analyses have revealed the diversity of gut bacteria; although some dominant species are abundant in most individuals, humans show considerable inter-individual variation in the strain composition of their intestinal microbiota. It is helpful therefore to define broad functional groups (‘clubs’) that share one or more characteristics of interest. This approach has been applied to the formation by microbial fermentation of short chain fatty acids that are actively absorbed by the host as energy sources. A combination of targeted molecular detection and information on cultured isolates is helping to reveal the impact of diet upon groups responsible for the fermentation of particular dietary carbohydrates and the formation of butyrate, and should provide the basis for theoretical modelling of this complex community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aminov RI, Walker AW, Duncan SH, Harmsen HJM, Welling GW, Flint HJ (2006) Molecular diversity, cultivation, and improved FISH detection of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 72:6371–6376

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  Google Scholar 

  • Belenguer A, Holtrop G, Duncan SH, Anderson SE, Calder AG, Flint HJ, Lobley GE. (2011) Rates of production and utilization of lactate by microbial communities from the human colon. FEMS Microbiol Ecol 77:107–119

    Google Scholar 

  • Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourie B et al (2004) The capacity of non-digestible carbohydrates to stimulate faecal bifidobacteria in healthy humans: a double blind, randomized, placebo-controlled, parallel-group, dose response relation study. Am J Clin Nutr 80:1658–1664

    PubMed  CAS  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paolo M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    Article  PubMed  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122

    Article  PubMed  Google Scholar 

  • Eckburg PB, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  • Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Flint HJ, Bayer EA, RinconMT LR, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  PubMed  CAS  Google Scholar 

  • Forsberg CW, Cheng K-J, White BA (1997) Polysaccharide degradation in the rumen and large intestine. In: Gastrointestinal microbiology, vol 1. Gastrointestinal ecosystems and fermentations. Chapman & Hall, New York, pp 319–379

    Chapter  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    Article  PubMed  CAS  Google Scholar 

  • Hold GL, Pryde SE, Russell VJ, Furrie E, Flint HJ (2002) Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39

    Article  PubMed  CAS  Google Scholar 

  • Jindou S, Brulc JM, Levy-Assaraf M, Rincon MT, Flint HJ, Berg ME, Wilson MK, White BA, Bayer EA, Lamed R, Borovok I (2008) Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol Lett 285:188–194

    Article  PubMed  CAS  Google Scholar 

  • Kettle H, Louis P, Flint HJ, Holtrop G Modelling the emergent dynamics of microbial communities in the human colon (in preparation)

    Google Scholar 

  • Leitch ECM, Walker AW, Duncan SH, Holtrop G, Flint HJ (2007) Selective colonization of insoluble substrates by human colonic bacteria. Environ Microbiol 72:667–679

    Article  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    Article  PubMed  CAS  Google Scholar 

  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106

    Article  PubMed  CAS  Google Scholar 

  • Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA transferase gene. Environ Microbiol 12:304–314

    Article  PubMed  CAS  Google Scholar 

  • McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342

    PubMed  CAS  Google Scholar 

  • Moore WEC, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207

    PubMed  CAS  Google Scholar 

  • Morris EJ, van Gylswyk NO (1980) Comparison of the action of rumen bacteria on cell walls from Eragrostis tef. J Agric Sci Camb 95:313–323

    Article  CAS  Google Scholar 

  • Qin JJ, Li RQ, Raes J et al (2010) A human gut microbial gene catalogue established by metagenome sequencing. Nature 464:59–70

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550

    Article  PubMed  CAS  Google Scholar 

  • Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89

    Article  PubMed  CAS  Google Scholar 

  • Russell WR, Gratz S, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G, Johntsone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ (2011) High protein, reduced carbohydrate diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 93:1062–1072

    Article  PubMed  CAS  Google Scholar 

  • Sleeth ML et al (2010) Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short chain fatty acids in appetite regulation. Nutr Res Rev 23:135–145

    Article  PubMed  CAS  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn’s disease patients. Proc Natl Acad Sci USA 105:16731–16736

    Article  PubMed  CAS  Google Scholar 

  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD et al (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 24:4799–4807

    Google Scholar 

  • Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584

    Article  PubMed  Google Scholar 

  • Vrieze A et al (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613

    Article  PubMed  CAS  Google Scholar 

  • Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    Article  PubMed  CAS  Google Scholar 

  • Walker AW, Duncan SH, Harmsen HJM, Holtrop G, Welling GW, Flint HJ (2008) The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol 10:3275–3283

    Article  PubMed  CAS  Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge support from the Research and Science Division of the Scottish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry J. Flint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flint, H.J., Duncan, S.H., Louis, P. (2012). Impact of Intestinal Microbial Communities upon Health. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_18

Download citation

Publish with us

Policies and ethics