Advertisement

Enhancing Mobile Interaction Using WLAN Proximity

  • W. Narzt
  • H. Schmitzberger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6767)

Abstract

Over the last decade a manifold of WLAN-based localization methods have evolved, whereupon most approaches focus on accurate location estimation and tracking using absolute coordinates. In this paper we propose a system prototype utilizing WLAN infrastructure for relative spatial determinations using discrete, unambiguously distinguishable zones. The prototype allows imitating near field communication (NFC) and beyond using conventional mobile devices not equipped with NFC hardware but a WLAN interface. We prove the functional correctness of our system in the course of a payment scenario at cash-desks, where customers are required to “show” their electronic store card at spatial proximity to their cashier without interferences from neighbors.

Keywords

Proximity Interaction WLAN Proximity Engine Sensor Network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferscha, A., Hechinger, M., Mayrhofer, R., dos Santos Rocha, M., Franz, M., Oberhauser, R.: Digital aura. In: Advances in Pervasive Computing. A Collection of Contributions Presented at the 2nd International Conference on Pervasive Computing (Pervasive 2004), vol. 176, pp. 405–410. Austrian Computer Society (OCG), Vienna (2004)Google Scholar
  2. 2.
    Lenzini, G.: Trust-based and context-aware authentication in a software architecture for context and proximity-aware services. In: de Lemos, R., Fabre, J.-C., Gacek, C., Gadducci, F., ter Beek, M. (eds.) Architecting Dependable Systems VI. LNCS, vol. 5835, pp. 284–307. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Holzmann, C., Hechinger, M., Ferscha, A.: Relation-centric development of spatially-aware applications. In: Proceedings of the 17th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE 2008). IEEE CS Press, Rome (2008)Google Scholar
  4. 4.
    Schmitzberger, H., Narzt, W.: Leveraging wlan infrastructure for large-scale indoor tracking. In: Proceedings of the Sixth International Conference on Wireless and Mobile Communications, ICWMC 2010 (2010)Google Scholar
  5. 5.
    Kjaergaard, M.B., Treu, G., Ruppel, P., Küpper, A.: Efficient indoor proximity and separation detection for location fingerprinting. In: MOBILWARE 2008: Proceedings of the 1st International Conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications, pp. 1–8. ICST, Brussels (2007)Google Scholar
  6. 6.
    Krumm, J., Hinckley, K.: The nearMe wireless proximity server. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 283–300. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Hightower, J., Borriello, G.: A survey and taxonomy of location sensing systems for ubiquitous computing. University of Washington, Department of Computer Science and Engineering, Seattle, WA, UW CSE 01-08-03 (August 2001)Google Scholar
  8. 8.
    Indulska, J., Sutton, P.: Location management in pervasive systems. In: ACSW Frontiers 2003: Proceedings of the Australasian Information Security Workshop Conference on ACSW Frontiers 2003, pp. 143–151. Australian Computer Society, Inc., Australia (2003)Google Scholar
  9. 9.
    Ni, L., Liu, Y., Lau, Y.C., Patil, A.: Landmarc: indoor location sensing using active rfid. In: Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom 2003), pp. 407–415 (2003)Google Scholar
  10. 10.
    Sanders, D., Mukhi, S., Laskowski, M., Khan, M., Podaima, B., McLeod, R.: A network-enabled platform for reducing hospital emergency department waiting times using an rfid proximity location system. In: 19th International Conference on Systems Engineering, ICSENG 2008, pp. 538–543 (2008)Google Scholar
  11. 11.
    Zhou, S., Feng, H., Yuan, R.: Error compensation for cricket indoor location system. In: 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 390–395 (2009)Google Scholar
  12. 12.
    Woodman, O., Harle, R.: Concurrent scheduling in the active bat location system. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), March 29-April 2, pp. 431–437 (2010)Google Scholar
  13. 13.
    Kortuem, G., Kray, C., Gellersen, H.: Sensing and visualizing spatial relations of mobile devices. In: UIST 2005: Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, pp. 93–102. ACM, New York (2005)Google Scholar
  14. 14.
    Chawathe, S.: Beacon placement for indoor localization using bluetooth. In: 11th International IEEE Conference on Intelligent Transportation Systems, ITSC 2008, pp. 980–985 (2008)Google Scholar
  15. 15.
    Diaz, J.J.M., Maues, R.d.A., Soares, R.B., Nakamura, E.F., Figueiredo, C.M.S.: Bluepass: An indoor bluetooth-based localization system for mobile applications. In: 2010 IEEE Symposium on Computers and Communications (ISCC), pp. 778–783 (2010)Google Scholar
  16. 16.
    Hay, S., Harle, R.: Bluetooth tracking without discoverability. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 120–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Chan, L.-W., Chiang, J.-r., Chen, Y.-c., Ke, C.-n., Hsu, J., Chu, H.-h.: Collaborative localization: Enhancing wiFi-based position estimation with neighborhood links in clusters. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 50–66. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Youssef, M., Mah, M., Agrawala, A.: Challenges: device-free passive localization for wireless environments. In: MobiCom 2007: Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 222–229. ACM Press, New York (2007)Google Scholar
  19. 19.
    Narzt, W., Schmitzberger, H.: Location-triggered code execution – dismissing displays and keypads for mobile interaction. In: Stephanidis, C. (ed.) UAHCI 2009. LNCS, vol. 5615, pp. 374–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • W. Narzt
    • 1
  • H. Schmitzberger
    • 1
  1. 1.Johannes Kepler University LinzLinzAustria

Personalised recommendations