Advertisement

The Design and Manufacture of Functional Micro-stationary PCR Chip

  • Jinquan Nie
  • Yulong Zhao
  • Yimin Liu
  • Keyin Liu
  • Niancai Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6767)

Abstract

This study presents a novel microfabricated polymerase chain reaction (PCR) chip based on silicon. A microheater utilizing doped semiconductors as heating resistors and a temperature sensor made of Pt are integrated on the chip to make up a thermal module. The micro-stationary PCR chip is fabricated on a silicon wafer using photolithography, wet etching and ion implantation technology. The package is created without complex processes. Three types of configurations for the microheater are designed and simulated to analyze the temperature distribution by the finite element analysis so as to enhance the temperature uniformity in the reaction chamber. With this approach, the microheater is optimized. Finally, the simulation results are validated by infrared images from experiments.

Keywords

PCR doped semiconductor temperature distribution temperature uniformity MEMS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chien, L.J., Wang, J.H., Hsieh, T.M., Chen, P.H., Chen, P.J., Lee, D.S., Luo, C.H., Lee, G.B.: A micro circulating PCR chip using a suction-type membrane for fluidic transport. Biomed. Microdevices 11, 359–367 (2009)CrossRefGoogle Scholar
  2. 2.
    Reyes, D.R., Lossifidis, D., Auroux, P.A., Manz, A.: Micro total analysis system: introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002)CrossRefGoogle Scholar
  3. 3.
    Northrup, M.A., Ching, M.T., White, R.M., Wltson, R.T.: DNA amplification with a microfabricated reaction chamber. In: Proceedings of Transducers, Chicago, pp. 924–926 (1993)Google Scholar
  4. 4.
    Anderson, R.C., Su, X., Bogdan, G.J., Fenton, J.: A Miniature Integrated Device for Automated Multistep Genetic Assays. Nucl. Acids. Res. 28, E60 (2000)CrossRefGoogle Scholar
  5. 5.
    Yoon, D.S., Lee, Y.S., Lee, Y., Cho, H.J., Sung, S.W., Oh, K.W., Cha, J., Lim, G.: Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. J. Micromech. Microeng. 12, 813–823 (2002)CrossRefGoogle Scholar
  6. 6.
    Yan, W., Du, L., Wang, J., Ma, L., Zhu, J.: Simulation and experimental study of PCR chip based on silicon. Sens. Actuators B: Chem. 108, 695–699 (2005)CrossRefGoogle Scholar
  7. 7.
    Nakano, H., Matsuda, K., Yohda, M., Nagamune, T., Endo, I., Yamane, T.: High speed polymerase chain reaction in constant flow. Biosci. Biotechnol. Biochem. 58, 349–352 (1994)CrossRefGoogle Scholar
  8. 8.
    Zhang, C., Xing, D., Li, Y.: Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotech. Adv. 25, 483–514 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jinquan Nie
    • 1
  • Yulong Zhao
    • 1
  • Yimin Liu
    • 1
  • Keyin Liu
    • 1
  • Niancai Peng
    • 1
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations