Skip to main content

Fragile X Mental Retardation Protein and Stem Cells

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

Stem cells, which can self-renew and produce different cell types, are regulated by both extrinsic signals and intrinsic factors. Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by the functional loss of fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein that forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, the role of Fmrp in stem cell biology has been explored in both Drosophila and the mouse. In this chapter, we discuss the role of FMRP in regulating the proliferation and differentiation of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214

    Article  PubMed  CAS  Google Scholar 

  • Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurobiol 68:1185–1195

    Article  PubMed  Google Scholar 

  • Callan MA, Cabernard C, Heck J, Luois S, Doe CQ, Zarnescu DC (2010) Fragile X protein controls neural stem cell proliferation in the Drosophila brain. Hum Mol Genet 19:3068–3079

    Article  PubMed  CAS  Google Scholar 

  • Castren M, Tervonen T, Karkkainen V, Heinonen S, Castren E, Larsson K, Bakker CE, Oostra BA, Akerman K (2005) Altered differentiation of neural stem cells in fragile X syndrome. Proc Natl Acad Sci USA 102:17834–17839

    Article  PubMed  CAS  Google Scholar 

  • Chia W, Somers WG, Wang H (2008) Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J Cell Biol 180:267–272

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Wang Y, Dockendorff TC, Erdjument-Bromage H, Tempst P, Schedl P, Jongens TA (2005) The Drosophila fragile X protein functions as a negative regulator in the orb autoregulatory pathway. Dev Cell 8:331–342

    Article  PubMed  CAS  Google Scholar 

  • Doe CQ (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116:855–863

    PubMed  CAS  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  PubMed  CAS  Google Scholar 

  • Epstein AM, Bauer CR, Ho A, Bosco G, Zarnescu DC (2009) Drosophila Fragile X protein controls cellular proliferation by regulating cbl levels in the ovary. Dev Biol 330:83–92

    Article  PubMed  CAS  Google Scholar 

  • Gao FB (2002) Understanding fragile X syndrome: insights from retarded flies. Neuron 34:859–862

    Article  PubMed  CAS  Google Scholar 

  • Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  PubMed  CAS  Google Scholar 

  • Hsieh J, Gage FH (2004) Epigenetic control of neural stem cell fate. Curr Opin Genet Dev 14:461–469

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Warren ST (2000) Understanding the molecular basis of fragile X syndrome. Hum Mol Genet 9:901–908

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17:539–544

    Article  PubMed  CAS  Google Scholar 

  • Jin P, Alisch RS, Warren ST (2004) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6:1048–1053

    Article  PubMed  CAS  Google Scholar 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  PubMed  CAS  Google Scholar 

  • Li X, Jin P (2009) Macro role(s) of microRNAs in fragile X syndrome? Neuromolecular Med 11:200–207

    Article  PubMed  CAS  Google Scholar 

  • Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11:329–338

    Article  PubMed  CAS  Google Scholar 

  • Li X, Zhao X (2008) Epigenetic regulation of mammalian stem cells. Stem Cells Dev 17:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2002) The stem-cell niche theory: lessons from flies. Nat Rev Genet 3:931–940

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2003) Stem cells: to be and not to be. Nature 425:353–355

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2008) Cell biology of stem cells: an enigma of asymmetry and self-renewal. J Cell Biol 180:257–260

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, Pfeiffer RL, Szulwach KE, Duan R, Barkho BZ et al (2010) Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 6:e1000898

    Article  PubMed  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    Article  PubMed  CAS  Google Scholar 

  • Park JK, Liu X, Strauss TJ, McKearin DM, Liu Q (2007) The miRNA pathway intrinsically controls self-renewal of drosophila germline stem cells. Curr Biol 17:533–538

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RH (2006) Micro RNAs in animal development. Cell 124:877–881

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC, de Cuevas M, Drummond-Barbosa D, Keyes L, Lilly M, Pepling M, Xie T (1997) The Drosophila germarium: stem cells, germ line cysts, and oocytes. Cold Spring Harb Symp Quant Biol 62:25–34

    Article  PubMed  CAS  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  PubMed  CAS  Google Scholar 

  • Tervonen TA, Louhivuori V, Sun X, Hokkanen ME, Kratochwil CF, Zebryk P, Castren E, Castren ML (2009) Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome. Neurobiol Dis 33:250–259

    Article  PubMed  CAS  Google Scholar 

  • The Dutch-Belgian Fragile X Consortium (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  • Wong MD, Jin Z, Xie T (2005) Molecular mechanisms of germline stem cell regulation. Annu Rev Genet 39:173–195

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Chen D, Duan R, Xia L, Wang J, Qurashi A, Jin P (2007a) Argonaute 1 regulates the fate of germline stem cells in Drosophila. Development 134:4265–4272

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Duan R, Chen D, Wang J, Jin P (2007b) Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Hum Mol Genet 16:1814–1820

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5:e1000444

    Article  PubMed  Google Scholar 

  • Zarnescu DC, Shan G, Warren ST, Jin P (2005) Come FLY with us: toward understanding fragile X syndrome. Genes Brain Behav 4:385–392

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Schaffer D, Gage F (2004) Neurogenesis in adult brain: understanding the mechanism and regulation. In Stem cells in the Nervous System:Functional and Clinical Implications. Springer, Heidelberg

    Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

P.J. is supported by National Institutes of Health. P.J. is a recipient of the Beckman Young Investigator Award and the Basil O′Connor Scholar Research Award, as well as an Alfred P. Sloan Research Fellow in Neuroscience. X.L. is supported in part by FRAXA Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qurashi, A., Li, X., Jin, P. (2012). Fragile X Mental Retardation Protein and Stem Cells. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_8

Download citation

Publish with us

Policies and ethics